题意:给定一个无向图,每个点有一个加油站,有一个油价,现在一辆车,每次询问要从起点s走到t,邮箱容量为c,问最小代价
思路:dijkstra算法,d数组多一个状态,表示当前油量即可
不过这题如果每次都把所有状态转移完,挺费时间的,卡着时间过的
后面改成每次1升1升加油去转移状态,效率会比较快,因为有很多无用状态可以省去
代码:
#include <cstdio> #include <cstring> #include <vector> #include <queue> using namespace std; const int MAXNODE = 1005; const int MAXEDGE = 20005; typedef int Type; const Type INF = 0x3f3f3f3f; struct Edge { int u, v; Type dist; Edge() {} Edge(int u, int v, Type dist) { this->u = u; this->v = v; this->dist = dist; } }; struct HeapNode { Type d; int u, c; HeapNode() {} HeapNode(Type d, int u, int c) { this->d = d; this->u = u; this->c = c; } bool operator < (const HeapNode& c) const { return d > c.d; } }; struct Dijkstra { int n, m; Edge edges[MAXEDGE]; int price[MAXNODE]; int first[MAXNODE]; int next[MAXEDGE]; bool done[MAXNODE][105]; Type d[MAXNODE][105]; void add_Edge(int u, int v, Type dist) { edges[m] = Edge(u, v, dist); next[m] = first[u]; first[u] = m++; } int dijkstra(int s, int t, int c) { priority_queue<HeapNode> Q; for (int i = 0; i < n; i++) for (int j = 0; j <= c; j++) d[i][j] = INF; d[s][0] = 0; memset(done, false, sizeof(done)); Q.push(HeapNode(0, s, 0)); while (!Q.empty()) { HeapNode x = Q.top(); Q.pop(); int u = x.u, cc = x.c; if (u == t) return d[u][0]; if (done[u][cc]) continue; done[u][cc] = true; for (int i = first[u]; i != -1; i = next[i]) { Edge& e = edges[i]; if (cc - e.dist >= 0) { int su = cc - e.dist; if (d[e.v][su] > d[u][cc]) { d[e.v][su] = d[u][cc]; Q.push(HeapNode(d[e.v][su], e.v, su)); } } if (cc + 1 <= c) { int su = cc + 1; if (d[u][su] > d[u][cc]) { d[u][su] = d[u][cc] + price[u]; Q.push(HeapNode(d[u][su], u, su)); } } } } return -1; } void init() { memset(first, -1, sizeof(first)); for (int i = 0; i < n; i++) scanf("%d", &price[i]); int mm = m; m = 0; int u, v, d; for (int i = 0; i < mm; i++) { scanf("%d%d%d", &u, &v, &d); add_Edge(u, v, d); add_Edge(v, u, d); } } void solve() { init(); int q; scanf("%d", &q); int s, t, c; while (q--) { scanf("%d%d%d", &c, &s, &t); int tmp = dijkstra(s, t, c); if (tmp == -1) printf("impossible\n"); else printf("%d\n", tmp); } } } gao; int main() { while (~scanf("%d%d", &gao.n, &gao.m)) { gao.solve(); } return 0; }
UVA 11367 - Full Tank?(最短路+DP)
原文:http://blog.csdn.net/accelerator_/article/details/39236689