首页 > 编程语言 > 详细

斐波那契数列的实现算法

时间:2020-06-28 22:42:30      阅读:70      评论:0      收藏:0      [点我收藏+]
# 递归。重复计算,时间复杂度O(2^n)- O(1) ,空间复杂度为O(n)
def fRecursive(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fRecursive(n - 1) + fRecursive(n - 2)

# a记录f(n-2)的值,b记录f(n-1)的值,不断更新a和b的值。非递归,空间复杂度O(1),时间复杂度O(n)。
def f(n):
    a, b, c, i = 0, 1, 1, 2
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        while i <= n:
            c = a + b
            a = b
            b = c
            i = i + 1
        return c

if __name__ == "__main__":
    n = 10
    print(fRecursive(n))
    print(f(n))

技术分享图片

 

斐波那契数列的实现算法

原文:https://www.cnblogs.com/mydesky2012/p/13205049.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!