首页 > 其他 > 详细

svm支持向量机理解

时间:2020-07-01 00:04:28      阅读:73      评论:0      收藏:0      [点我收藏+]

1、优点:

* 因为是凸优化,所以求得的解一定是全局最优解
* 适用于线性和非线性问题
* 高维数据也适用,因为只取决于向量而非数据维度
* 理论基础比较完善,不像神经网络很像黑盒。

2、缺点:

* 只适用于二分类问题。当然也可以通过组合多个svm来处理多分类问题。
* 二次规划问题求解会涉及m阶矩阵的计算,因此不适用于超大数据集。
* 对缺失数据比较敏感。因为svm希望数据在特征空间内线性可分,所以对数据依赖性较高。

3、核函数

* 用于将低维空间的数据映射到高维空间,便于更好地划分数据集。高效不易过拟合,但不能解决非线性问题。
* 线性核:当特征维度超过样本数量时(文本分类通常是此情况)使用
* 多项式核:一般很少用,稍显不稳定。
* RBF核:当特征维度比较小,样本数量中等时使用

4、硬间隔

* 硬间隔不允许样本有分类错误
* 通过使间隔最大化,和使样本正确分类来推导。
* 使用了SMO(序列最小优化)算法。

5、软间隔

* 允许分类存在一定程度的错误

svm支持向量机理解

原文:https://www.cnblogs.com/jaysonteng/p/13216704.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!