首页 > 其他 > 详细

数据结构(八)-----散列表

时间:2020-07-01 17:56:56      阅读:58      评论:0      收藏:0      [点我收藏+]

散列思想

散列表的英文叫“Hash Table”,我们平时也叫它“哈希表”或者“Hash 表”,你一定也经常听过它,我在前面的文章里,也不止一次提到过,但是你是不是真的理解这种数据结构呢?散列表用的是数组支持按照下标随机访问数据的特性,所以散列表其实就是数组的一种扩展,由数组演化而来。可以说,如果没有数组,就没有散列表。我用一个例子来解释一下。假如我们有 89 名选手参加学校运动会。为了方便记录成绩,每个选手胸前都会贴上自己的参赛号码。这 89 名选手的编号依次是 1 到 89。现在我们希望编程实现这样一个功能,通过编号快速找到对应的选手信息。你会怎么做呢?我们可以把这 89 名选手的信息放在数组里。编号为 1 的选手,我们放到数组中下标为 1的位置;编号为 2 的选手,我们放到数组中下标为 2 的位置。以此类推,编号为 k 的选手放到数组中下标为 k 的位置。
因为参赛编号跟数组下标一一对应,当我们需要查询参赛编号为 x 的选手的时候,我们只需要将下标为 x 的数组元素取出来就可以了,时间复杂度就是 O(1)。这样按照编号查找选手信息,效率是不是很高?
实际上,这个例子已经用到了散列的思想。在这个例子里,参赛编号是自然数,并且与数组的下标形成一一映射,所以利用数组支持根据下标随机访问的时候,时间复杂度是 O(1) 这一特性,就可以实现快速查找编号对应的选手信息。
 
假设校长说,参赛编号不能设置得这么简单,要加上年级、班级这些更详细的信息,所以我们把编号的规则稍微修改了一下,用 6 位数字来表示。比如 051167,其中,前两位 05 表示年级,中间两位 11 表示班级,最后两位还是原来的编号 1 到 89。这个时候我们该如何存储选手信息,才能够支持通过编号来快速查找选手信息呢?思路还是跟前面类似。尽管我们不能直接把编号作为数组下标,但我们可以截取参赛编号的后两位作为数组下标,来存取选手信息数据。当通过参赛编号查询选手信息的时候,我们用同样的方法,取参赛编号的后两位,作为数组下标,来读取数组中的数据。
这就是典型的散列思想。其中,参赛选手的编号我们叫作键(key)或者关键字。我们用它来标识一个选手。我们把参赛编号转化为数组下标的映射方法就叫作散列函数(或“Hash函数”“哈希函数”),而散列函数计算得到的值就叫作散列值(或“Hash 值”“哈希值”)。
技术分享图片

总结:

散列表用的就是数组支持按照下标随机访问的时候,时间复杂度是 O(1) 的特性。我们通过散列函数把元素的键值映射为下标,然后将数据存储在数组中对应下标的位置。当我们按照键值查询元素时,我们用同样的散列函数,将键值转化数组下标,从对应的数组下标的位置取数据。

散列函数

散列函数,顾名思义,它是一个函数。我们可以把它定义成hash(key),其中 key 表示元素的键值,hash(key) 的值表示经过散列函数计算得到的散列值。那第一个例子中,编号就是数组下标,所以 hash(key) 就等于 key。改造后的例子,写成散列函数稍微有点复杂。我用伪代码将它写成函数就是下面这样:
int hash(String key) {
    //获取后两位字符
    string lastTwoChars = key.substr(length-2, length);
    //将后两位字符转换为整数
    int hashValue = convert lastTwoChas to int-type;
    return hashValue;
}

散列函数设计的要求:

1. 散列函数计算得到的散列值是一个非负整数;-----因为数组下标是从 0 开始的,所以散列函数生成的散列值也要是非负整数。
2. 如果 key1 = key2,那 hash(key1) == hash(key2);
3. 如果 key1 ≠ key2,那 hash(key1) ≠ hash(key2)。-----真实情况中,这点满足不了,首先算法不能完全避免hash冲突,其次数组的长度是有限的,也会增加hash冲突的概率

散列冲突

再好的散列函数也无法避免散列冲突。那究竟该如何解决散列冲突问题呢?我们常用的散列冲突解决方法有两类,开放寻址法(open addressing)和链表法(chaining)。

开放寻址法

1. 线性探测
开放寻址法的核心思想是,如果出现了散列冲突,我们就重新探测一个空闲位置,将其插入。

技术分享图片

从图中可以看出,散列表的大小为 10,在元素 x 插入散列表之前,已经 6 个元素插入到散列表中。x 经过 Hash 算法之后,被散列到位置下标为 7 的位置,但是这个位置已经有数据了,所以就产生了冲突。于是我们就顺序地往后一个一个找,看有没有空闲的位置,遍历到尾部都没有找到空闲的位置,于是我们再从表头开始找,直到找到空闲位置 2,于是将其插入到这个位置。

不过这种操作也会有一个问题,就是查找的时候发生hash碰撞后,需要依次按照顺序往后寻找,如果找到某一个空闲位置没有找到,则不存在此元素。

2、二次探测

所谓二次探测,跟线性探测很像,线性探测每次探测的步长是 1,那它探测的下标序列就是hash(key)+0,hash(key)+1,hash(key)+2……而二次探测探测的步长就变成了原来的“二次方”,也就是说,它探测的下标序列就是 hash(key)+0,hash(key)+12,hash(key)+22……

3、双重散列

意思就是不仅要使用一个散列函数。我们使用一组散列函数 hash1(key),hash2(key),hash3(key)……我们先用第一个散列函数,如果计算得到的存储位置已经被占用,再用第二个散列函数,依次类推,直到找到空闲的存储位置。

总结:

不管采用哪种探测方法,当散列表中空闲位置不多的时候,散列冲突的概率就会大大提高。为了尽可能保证散列表的操作效率,一般情况下,我们会尽可能保证散列表中有一定比例的空闲槽位。我们用装载因子(load factor)来表示空位的多少。
装载因子的计算公式是:
散列表的装载因子 = 填入表中的元素个数 / 散列表的长度
装载因子越大,说明空闲位置越少,冲突越多,散列表的性能会下降。

链表法

在散列表中,每个“桶(bucket)”或者“槽(slot)”会对应一条链表,所有散列值相同的元素我们都放到相同槽位对应的链表中。

技术分享图片

 

 

数据结构(八)-----散列表

原文:https://www.cnblogs.com/alimayun/p/13220362.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!