首页 > 其他 > 详细

班课5

时间:2020-07-06 21:40:20      阅读:41      评论:0      收藏:0      [点我收藏+]

1. Spark Shuffle

回顾一下MapReduce的shuffle,即先按照key聚合,再对key进行排序

而spark中的shuffle不一定按key排序,shuffle前称为MapTask阶段,shuffle之后称为ReduceTask阶段

每一个分区分配一个MapTask

shuffle这里主要讨论Hash Shuffle与Sort Shuffle

其中Hash Shuffle分为两个版本,一个是未经过优化的,还有一个是优化后的

2. 未经优化的HashShuffle

每一个Map Task都会生成Reduce Task数量这么多个文件

这样做的好处是到了reduce阶段,因为map task给下游stage的每个reduce task都创建了一个磁盘文件,每个reduce task只要从上游map task所在节点上,拉取属于自己的那一个磁盘文件即可

缺点是产生大量小文件,效率低下

#num of mappers*num of reducers

3. 优化后的HashShuffle(consolidateFiles)

默认使用未优化的HashShuffle

引入了shuffleFileGroup的概念,对于每一个Executor,一个executor上有多少个CPU core,就可以并行执行多少个Map task,每个core同一时间只能运行一个Map Task

第一批被运行的MapTask也会创建下游Reduce Task那么多个磁盘文件,并组成一个shuffleFileGroup,也就是说每一个core对应一个shuffleFileGroup,从第二批开始,每个Map Task都会复用第一批的shuffleFileGroup,而不产生新的文件

简单一点理解:因为同一时间一个core只能运行一个map task,所以存在等待

补充:data在hash阶段被分区, hash shuffle不给key排序

#numExecutor*numCores*numReduceTask (老师的版本cores/T是考虑可能同一个core同一时间运行多个task)

4. sort shuffle分为normal与by pass两个版本

sort shuffle normal跟MR shuffle基本一致,最终一个map对应一个文件,且为了reduce阶段更加方便生成index文件(最终一个mapper产生两个文件)

bypass也是产生两个文件,但是该机制下不会进行排序

若partition很小(shuffle read task很小)就启动bypass机制,相当于hash shuffle

5. LSH

需要用到distance判断两个事物的相似度,首先将事物的各个属性转化为一串可以计算的数字,然后套用距离公式进行计算,最常见的是之前9417讲过的L p norm distance

 

 

技术分享图片

 

distance的计算方式有angular distance(角度),cosine distance【cos=(a b的内积)/(|a||b|), ab的内积等于a1b1+a2b2, 需要注意cos越大相似度越大】

6. Hash code

将每一个数据看成一个object,这个object会有很多属性,对每一个object基于她们的属性值对应唯一一个数,该值称为hash code(用各种不同的方法生成hash code)

注意属性相同hash code一定相同;但是属性不同,hash code可能相同;属性区别不大但是hash code可能差距很大

而similarity属相相同则相似度最高,属性稍微不同相似度也很高

7. 随着维度的增加,传统计算similarity的方法不是很有效,所以引用LSH(Locality Sensitive Hashing)

LSH依然是将Data转化为Hash Code,但与统一转化不一样的是,LSH的转化结合了similarity。希望达到的是相似的数据很大概率得到一样的hash key,不相似的数据很大概率得到不同的hash key

若想找到与A相似的,则首先计算A的hash code,利用该Hash Code查表,看哪些数据拥有相似的hash code,遍历找到distance最小的

8. 如何设计Hash Function

每次对object hash的结果是一个整数,在LSH中一般会生成m个h

对object hash m次,最终生成一个m味的superHash

9. 如何保证真正相似的数据hash code一定相同

将条件放宽,引入C2LSH

从hash code必须完全一样变为相差一位也可以,若是还是不全则继续放宽条件到两位

对两个m位的hash code,从第一位开始上下对比,一样的称为一个collision,数一共有多少collision,然后跟开始规定的阈值对比。若没有取得足够的candidate则放宽条件,若是上下两个数相差1也可以

10. C2LSH步骤

1)generate LSH function(random vectors and random uniform values)作业中已经有了

2)计算并存储hash function的值,作业中已经给出了n*m的列表(data数量*hash code位数)

3)计算A的hash code,老师已经给出了

选择跟A相似度达到多少的,放入列表,若是得到的数据不够多,放宽条件,直到得到足够的数据,candedate数量是规定好的

需要写测试case以及report,建议对RDD部分用lucidchart画图表

bonus取决于运行时间,最好少用shuffle,建议对数据进行分区

data_hashes输入的是一个RDD,需要对其做转化

班课5

原文:https://www.cnblogs.com/eleni/p/13246114.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!