首页 > 编程语言 > 详细

目标检测算法-Light Head R-CNN

时间:2020-07-09 23:57:22      阅读:113      评论:0      收藏:0      [点我收藏+]

一般来说网络的head都设计很重"重",且head部分有一些层,计算量大弄且耗时,故导致检测速度很慢,Light-Head R-CNN则是主要通过对head部分的修改减少了较多计算量。

Light-Head R-CNN的网络结构:

技术分享图片

 

Light-Head R-CNN网络结构跟R-CNN的网络结构和R-FCN的网络结构差不多,针对R-FCN的score map维度过大的问题,这里就用10代替了class,也就是说score map维度变成了10×p×p(p=7)=490,因此降低了PSROI Pooling和FC层的计算量,使用large separable Convolution 代替1×1Convolution,这里借鉴了Inception V3的思想。

技术分享图片

将k×k的卷积转化为1×k和k×1,同时采用上图左右两边的结构,最后通过padding融合feature map,得到size不变的特征图将490维特征图和ROI作为PSROI的输入则得到10维p×p的特征图,如果作为ROI Pooling的输入则得到490维的特征图,因为class已经改为1-,所以没办法直接进行分类,所以接了个FC层做channel变换,在进行分类和回归。

目标检测算法-Light Head R-CNN

原文:https://www.cnblogs.com/cucwwb/p/13276883.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!