首页 > 其他 > 详细

logistics regression

时间:2020-07-10 00:59:21      阅读:81      评论:0      收藏:0      [点我收藏+]
# solve the problem of 13 chapter
rm(list = ls())
data <- read.csv("C:/users/mike1/desktop/data/RData/chapter13_oneExercise.csv", header = T, sep = ",")
dim(data)
names(data) # show the tabel 
data[1:10,]# show 10 lines

result <- glm(y~目标速度, data = data, family = binomial(link = probit))
summary(result)

result_fit <- result$fit 
result_fit

result_prd <- result$linear.predictors
result_prd

result_res <- residuals(result, c = "deviance")
result_res

qqnorm(result_res)
qqline(result_res)

plot(result_prd, result_res)
plot(result_fit, result_res)

 

技术分享图片

 

 预测值与残差图:

技术分享图片

 

logistics regression

原文:https://www.cnblogs.com/zijidefengge/p/13277122.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!