The starter code contains code to load 45 2D data points. When plotted using the scatter function, the results should look like the following:
In this step, you will implement PCA to obtain xrot, the matrix in which the data is "rotated" to the basis comprising made up of the principal components
Step 1a: Finding the PCA basis
Find and , and draw two lines in your figure to show the resulting basis on top of the given data points.
Step 1b: Check xRot
Compute xRot, and use the scatter function to check that xRot looks as it should, which should be something like the following:
In the next step, set k, the number of components to retain, to be 1
Code
close all %%================================================================ %% Step 0: Load data % We have provided the code to load data from pcaData.txt into x. % x is a 2 * 45 matrix, where the kth column x(:,k) corresponds to % the kth data point.Here we provide the code to load natural image data into x. % You do not need to change the code below. x = load(‘pcaData.txt‘,‘-ascii‘); % 载入数据 figure(1); scatter(x(1, :), x(2, :)); % 用圆圈绘制出数据分布 title(‘Raw data‘); %%================================================================ %% Step 1a: Implement PCA to obtain U % Implement PCA to obtain the rotation matrix U, which is the eigenbasis % sigma. % -------------------- YOUR CODE HERE -------------------- u = zeros(size(x, 1)); % You need to compute this [n m]=size(x); % x=x-repmat(mean(x,2),1,m); %预处理,均值为零 —— 2维,每一维减去该维上的均值 sigma=(1.0/m)*x*x‘; % 协方差矩阵 [u s v]=svd(sigma); % -------------------------------------------------------- hold on plot([0 u(1,1)], [0 u(2,1)]); % 画第一条线 plot([0 u(1,2)], [0 u(2,2)]); % 画第二条线 scatter(x(1, :), x(2, :)); hold off %%================================================================ %% Step 1b: Compute xRot, the projection on to the eigenbasis % Now, compute xRot by projecting the data on to the basis defined % by U. Visualize the points by performing a scatter plot. % -------------------- YOUR CODE HERE -------------------- xRot = zeros(size(x)); % You need to compute this xRot=u‘*x; % -------------------------------------------------------- % Visualise the covariance matrix. You should see a line across the % diagonal against a blue background. figure(2); scatter(xRot(1, :), xRot(2, :)); title(‘xRot‘); %%================================================================ %% Step 2: Reduce the number of dimensions from 2 to 1. % Compute xRot again (this time projecting to 1 dimension). % Then, compute xHat by projecting the xRot back onto the original axes % to see the effect of dimension reduction % -------------------- YOUR CODE HERE -------------------- k = 1; % Use k = 1 and project the data onto the first eigenbasis xHat = zeros(size(x)); % You need to compute this xHat = u*([u(:,1),zeros(n,1)]‘*x); % 降维 % 使特征点落在特征向量所指的方向上而不是原坐标系上 % -------------------------------------------------------- figure(3); scatter(xHat(1, :), xHat(2, :)); title(‘xHat‘); %%================================================================ %% Step 3: PCA Whitening % Complute xPCAWhite and plot the results. epsilon = 1e-5; % -------------------- YOUR CODE HERE -------------------- xPCAWhite = zeros(size(x)); % You need to compute this xPCAWhite = diag(1./sqrt(diag(s)+epsilon))*u‘*x; % 每个特征除以对应的特征向量,以使每个特征有一致的方差 % -------------------------------------------------------- figure(4); scatter(xPCAWhite(1, :), xPCAWhite(2, :)); title(‘xPCAWhite‘); %%================================================================ %% Step 3: ZCA Whitening % Complute xZCAWhite and plot the results. % -------------------- YOUR CODE HERE -------------------- xZCAWhite = zeros(size(x)); % You need to compute this xZCAWhite = u*diag(1./sqrt(diag(s)+epsilon))*u‘*x; % -------------------------------------------------------- figure(5); scatter(xZCAWhite(1, :), xZCAWhite(2, :)); title(‘xZCAWhite‘); %% Congratulations! When you have reached this point, you are done! % You can now move onto the next PCA exercise. :)
原文:http://www.cnblogs.com/sprint1989/p/3971567.html