已知函数\(f(x)=x-1+\frac{a}{e^x},a\in R\)
\(1.\)若曲线\(f(x)\)在\((1,f(1))\)处的切线平行于\(x\)轴,求\(a\)的值
\(2.\)当\(a=1\)时,若直线\(l:y=kx-1\)与曲线\(f(x)\)相切,求\(l\)的方程
解答:
\(1.\)
\[f^{‘}(x)=1-\frac{a}{e^x}
\]
\[f^{‘}(1)=0
\]
\[1-\frac{a}{e}=0
\]
\[a=e
\]
\(2.\)
设切点为\((x_0,y_0)\)
\[f(x_0)=x_0-1+\frac{1}{e^{x_0}}=kx_0-1
\]
\[f^{‘}(x_0)=1-\frac{1}{e^{x_0}}=k
\]
\[x_0-1+\frac{1}{e^{x_0}}+1-\frac{1}{e^{x_0}}=kx_0-1+k
\]
\[(k-1)(x_0+1)=0
\]
当\(k=1\)时
\[1-\frac{1}{e^{x_0}}=1
\]
不成立
当\(x_0=-1\)时
\[k=1-e
\]
\[l:y=(1-e)x-1
\]
曲线与直线相切
原文:https://www.cnblogs.com/knife-rose/p/13287145.html