首页 > Web开发 > 详细

自监督 论文 Self-supervised Visual Feature Learning with Deep Neural Networks

时间:2020-07-14 09:51:23      阅读:64      评论:0      收藏:0      [点我收藏+]

自监督学习

自监督学习(Self-Supervised Learning)是一种介于无监督和监督学习之间的一种新范式,旨在减少深度网络对大量注释数据的需求。大量的人工标注的样本是费时耗力的。

它通过定义无注释(annotation-free)的前置任务(pretext task),为特征学习提供代理监督信号。

技术分享图片

pretext task

在预训练阶段,使用伪标记当作标签进行网络权重训练。因此在自监督学习中,如何生成伪标记是前置任务的关键。

技术分享图片

伪标签生成

图片补全

paper

技术分享图片

图片旋转

paper

技术分享图片

图片着色

paper

技术分享图片

上下文预测

paper

技术分享图片

技术分享图片

downstream task

在前置任务训练完成后,可将学得的特征作为已训练的模型进一步迁移(迁移学习)到下游任务(downstream tasks),使其获得更好的解的起点。

自监督 论文 Self-supervised Visual Feature Learning with Deep Neural Networks

原文:https://www.cnblogs.com/linzhenyu/p/13297132.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!