交换排序:
算法思想:
先找一个基准元素,比它小的往左去,比它大的往右去。
分成左右两块重复操作。
不断划分,左边都小于基准元素,右边都大于基准元素。
//用第一个元素将待排序序列划分成左右两个部分
int Partition(int A[],int low,int high){
int pivot=A[low]; //第一个元素作为枢纽
while(low<high){ //用low、high搜索枢纽的最终位置
while(low<high&&A[high]>=pivot) --high;
A[low]=A[high]; //比枢纽小的元素移动到左端
while(low<high&&A[low]<=pivot) ++low;
A[high]=A[low]; //比枢纽大的元素移动到右端
}
A[low]=pivot; //枢纽元素存放到最终位置
return low; //返回存放枢纽的最终位置
}
//快速排序
void QuickSort(int A[],int low,int high){
if(low<high){ //边界条件
int pivotpos=Partition(A,low,high);
QuickSort(A,low,pivotpos-1);
QuickSort(A,pivotpos+1,high);
}
}
每一层的QuickSork只需要处理剩余待排序元素,时间复杂度不会超过O(n)
时间复杂度=O(n*递归层数)
空间复杂度=O(递归层数)
递归工作栈。
把n个元素组织成二叉树,二叉树的层数就是递归调用的层数
n个结点的二叉树,最小高度=log2n向下取整+1
最大高度=n
每一次选中”枢轴“将待排序序列划分为均匀的两个部分,则递归深度最小,算法效率最高
每一次选中的”枢轴“将待排序序列划分为很不均匀的两个部分,则会导致递归深度增加,算法效率变低。
若初始序列有序或逆序,则快速排序的性能最差(因为每次选择的都是最靠边的元素)
尽量选择可以把数据中分的枢轴元素。
不稳定
代码需要能够完完全全手写出来。
原文:https://www.cnblogs.com/jev-0987/p/13322161.html