首页 > 移动平台 > 详细

intel:spectre&Meltdown侧信道攻击(四)—— cache mapping

时间:2020-07-20 00:55:55      阅读:121      评论:0      收藏:0      [点我收藏+]

  前面简单介绍了row hammer攻击的原理和方法,为了更好理解这种底层硬件类攻击,今天介绍一下cpu的cache mapping;

  众所周知,cpu从内存读数据,最开始用的是虚拟地址,需要通过分页机制,将虚拟地址转换成物理地址,然后从物理地址(默认是DRAM,俗称内存条)读数据;但内存条速度和cpu相差近百倍,由此诞生了L1\L2\L3 cache;cpu取数据时,会先从各个层级的cache去找,没有的再从内存取;那么问题来了,L3 cache里面有set、slice、line等模块将整个cache划分成一个一个64byte的cache line,cpu是怎么根据物理地址从L3 cache中取数据的了?比如8MB的L3 cache,一共有8MB/64byte = 2,097,152个cache line,cpu怎么根据物理地址精确地找到目标cache line了?

  1、直接映射(单路相连)

  假如物理地址是0x654,这个地址对应的L3 cache的哪个存储单元了?先看一种最简单的情况:

  •  假如有8个cache line,需要3bit遍历,中间标黄的010就是cache line之间的index;
  •  假如每个cache line 长度是8byte,同样只需要3bit就能遍历所有bbyte,标蓝的就是cache line内部的offset
  •  剩下标绿的11001就是tag;cpu额外有个tag array,通过index取出tag array中的tag,和11001对比,如果是,说明这个byte就是该物理地址对应的存储单元,可以马上取数据了,这叫cache hit;否则称为cache miss;

      技术分享图片

    直接映射有缺陷:如果两个物理地址的index和offset都一样,但tag不同,也会映射到同一个cache line,增加了刷新cache的时间成本。由此产生了改进的方法,

    2、两路相连

    和1的直连比,仅仅把tag array和cache line组均分成2分,offset和index寻址不变,仅仅是tag对比改变:这里由于分了两组,所以会有2个tag,只要物理地址的tag和其中一个相同,就算cache hit;相当于多了一次tag比对的机会,增加了命中概率;比如物理地址的tag=0x32,和tag array左边那个是一样的,那么cache line就用way0的;

         如果继续分组,比如4组,就是4way;8组就是8way了,以此类推(后面我在kali上做实验,查到cache是8way的,也就是说每个物理地址的tag都有8次对比的机会,命中的概率还是蛮大的);

  技术分享图片

    再举例,比如缓存总大小32 KB,由4路组相连cache,cache line大小是32 Bytes,该怎么划分了?

  •  总大小32KB,由4路,每路8KB;
  •    每个cache line 32byte,那么一共有8KB/32byte=256个,所以index至少8bit;
  •    每个cache line 32byte,offset至少5bit;

   整个规划架构如下:

  技术分享图片

  3、全连接

   所有的cache line都在一个组内,因此地址中不需要index部分;可根据地址中的tag部分和所有的cache line对应的tag进行比较(硬件上可能并行比较也可能串行比较),哪个tag比较相等,就命中某个cache line,所以在全相连缓存中,任意地址的数据可以缓存在任意的cache line;但这么做成本很高;

  技术分享图片

   4、前面介绍3中cache mapping的方法,一旦出现cache miss,cpu会怎么做了?

   假设我们有一个64 Bytes大小直接映射缓存,cache line大小是8 Bytes,采用写分配和写回机制。当CPU从地址0x2a读取一个字节,cache中的数据将会如何变化呢?假设当前cache状态如下图所示(tag旁边valid一栏的数字1代表合法。0代表非法。后面Dirty的1代表dirty,0代表没有写过数据,即非dirty);

  技术分享图片

   根据index找到对应的cache line,对应的tag部分valid bit是合法的,但是tag的值不相等,因此发生cache miss。此时我们需要从地址0x28(8字节对齐)地址加载8字节数据到该cache line中(cache line是缓存最小的读写单元);但是,我们发现当前cache line的dirty bit置位(表示),所以cache line里面的数据不能被简单的丢弃;由于采用写回机制,所以我们需要将cache中的数据0x11223344写到地址0x0128地址(tag:0x04 index:101 offset:010,连接起来就是100 101 010=0x12a,考虑到8字节对齐,就从0x128开始);

  技术分享图片

   当写回操作完成,再将主存中0x28地址开始的8个字节加载到该cache line中,并清除dirty bit。然后根据offset找到0x52返回给CPU;

  5、 cache mapping测试

  https://github.com/google/rowhammer-test/tree/master/cache_analysis  这里有现成的代码,可以直接用;

  核心思路:分配虚拟空间->转成物理地址->每隔一页再生成物理地址->这两个地址在同一个cache set吗? -> 如果是就保留->从该保留的地址读10次数据,保留每次耗时->取中位数;

  本人实验环境kali下查看cpu的ways_of_associate是8,关联度就是8;

       技术分享图片

      代码中:尝试的地址个数:int max_addr_count = 9 * 4 就可以在8附近(比如5~11)多取几个值对比看看结果;(原作则是12way的,用不同数量地址反复做测试,发现地址数量大于13后耗时明显增加很多,也就是cache missing激增)

// Copyright 2015, Google, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <assert.h>
#include <fcntl.h>
#include <stdint.h>
#include <stdio.h>
#include <sys/mman.h>
#include <time.h>
#include <unistd.h>

#include <algorithm>

// This program attempts to pick sets of memory locations that map to
// the same L3 cache set.  It tests whether they really do map to the
// same cache set by timing accesses to them and outputting a CSV file
// of times that can be graphed.  This program assumes a 2-core Sandy
// Bridge CPU.


// Dummy variable to attempt to prevent compiler and CPU from skipping
// memory accesses.
int g_dummy;

namespace {

const int page_size = 0x1000;
int g_pagemap_fd = -1;

// Extract the physical page number from a Linux /proc/PID/pagemap entry.
uint64_t frame_number_from_pagemap(uint64_t value) {
  return value & ((1ULL << 54) - 1);
}

void init_pagemap() {
  g_pagemap_fd = open("/proc/self/pagemap", O_RDONLY);
  assert(g_pagemap_fd >= 0);
}

/*虚拟地址转成物理地址*/
uint64_t get_physical_addr(uintptr_t virtual_addr) {
  uint64_t value;
  /*virtual_addr=16<<20;page_size=4096,sizeof(value)=8,offset=4096*8*/
  off_t offset = (virtual_addr / page_size) * sizeof(value);
  int got = pread(g_pagemap_fd, &value, sizeof(value), offset);
  assert(got == 8);

  // Check the "page present" flag.
  assert(value & (1ULL << 63));

  uint64_t frame_num = frame_number_from_pagemap(value);
  return (frame_num * page_size) | (virtual_addr & (page_size - 1));
}

// Execute a CPU memory barrier.  This is an attempt to prevent memory
// accesses from being reordered, in case reordering affects what gets
// evicted from the cache.  It‘s also an attempt to ensure we‘re
// measuring the time for a single memory access.
//
// However, this appears to be unnecessary on Sandy Bridge CPUs, since
// we get the same shape graph without this.
inline void mfence() {
  asm volatile("mfence");
}

// Measure the time taken to access the given address, in nanoseconds.
int time_access(uintptr_t ptr) {
  struct timespec ts0;
  int rc = clock_gettime(CLOCK_MONOTONIC, &ts0);
  assert(rc == 0);

  g_dummy += *(volatile int *) ptr;
  mfence();

  struct timespec ts;
  rc = clock_gettime(CLOCK_MONOTONIC, &ts);
  assert(rc == 0);
  return (ts.tv_sec - ts0.tv_sec) * 1000000000
         + (ts.tv_nsec - ts0.tv_nsec);
}

// Given a physical memory address, this hashes the address and
// returns the number of the cache slice that the address maps to.
//
// This assumes a 2-core Sandy Bridge CPU.
//
// "bad_bit" lets us test whether this hash function is correct.  It
// inverts whether the given bit number is included in the set of
// address bits to hash.
int get_cache_slice(uint64_t phys_addr, int bad_bit) {
  // On a 4-core machine, the CPU‘s hash function produces a 2-bit
  // cache slice number, where the two bits are defined by "h1" and
  // "h2":
  //
  // h1 function:
  //   static const int bits[] = { 18, 19, 21, 23, 25, 27, 29, 30, 31 };
  // h2 function:
  //   static const int bits[] = { 17, 19, 20, 21, 22, 23, 24, 26, 28, 29, 31 };
  //
  // This hash function is described in the paper "Practical Timing
  // Side Channel Attacks Against Kernel Space ASLR".
  //
  // On a 2-core machine, the CPU‘s hash function produces a 1-bit
  // cache slice number which appears to be the XOR of h1 and h2.

  // XOR of h1 and h2:
  static const int bits[] = { 17, 18, 20, 22, 24, 25, 26, 27, 28, 30 };

  int count = sizeof(bits) / sizeof(bits[0]);
  int hash = 0;
  for (int i = 0; i < count; i++) {
    hash ^= (phys_addr >> bits[i]) & 1;
  }
  if (bad_bit != -1) {
    hash ^= (phys_addr >> bad_bit) & 1;
  }
  return hash;
}

bool in_same_cache_set(uint64_t phys1, uint64_t phys2, int bad_bit) {
  // For Sandy Bridge, the bottom 17 bits determine the cache set
  // within the cache slice (or the location within a cache line).
  uint64_t mask = ((uint64_t) 1 << 17) - 1;
  return ((phys1 & mask) == (phys2 & mask) &&
          get_cache_slice(phys1, bad_bit) == get_cache_slice(phys2, bad_bit));
}

int timing(int addr_count, int bad_bit) {
  size_t size = 16 << 20;
  uintptr_t buf =
    (uintptr_t) mmap(NULL, size, PROT_READ | PROT_WRITE,
                     MAP_PRIVATE | MAP_ANONYMOUS | MAP_POPULATE, -1, 0);//分配内存
  assert(buf);

  uintptr_t addrs[addr_count];
  addrs[0] = buf;
  uintptr_t phys1 = get_physical_addr(addrs[0]);

  // Pick a set of addresses which we think belong to the same cache set.两个物理地址的跨度是1页;
  uintptr_t next_addr = buf + page_size;
  uintptr_t end_addr = buf + size;
  int found = 1;
  while (found < addr_count) {
    assert(next_addr < end_addr);
    uintptr_t addr = next_addr;
    next_addr += page_size;

    uint64_t phys2 = get_physical_addr(addr);
    if (in_same_cache_set(phys1, phys2, bad_bit)) {
      addrs[found] = addr;
      found++;
    }
  }

  // Time memory accesses.
  int runs = 10;
  int times[runs];//记录地址的读取耗时
  for (int run = 0; run < runs; run++) {
    // Ensure the first address is cached by accessing it.
    g_dummy += *(volatile int *) addrs[0];
    mfence();
    // Now pull the other addresses through the cache too.
    for (int i = 1; i < addr_count; i++) {
      g_dummy += *(volatile int *) addrs[i];
    }
    mfence();
    // See whether the first address got evicted from the cache by
    // timing accessing it.
    times[run] = time_access(addrs[0]);
  }
  // Find the median time.  We use the median in order to discard
  // outliers.  We want to discard outlying slow results which are
  // likely to be the result of other activity on the machine.
  //
  // We also want to discard outliers where memory was accessed
  // unusually quickly.  These could be the result of the CPU‘s
  // eviction policy not using an exact LRU policy.
  std::sort(times, &times[runs]);
  int median_time = times[runs / 2];

  int rc = munmap((void *) buf, size);
  assert(rc == 0);

  return median_time;
}

int timing_mean(int addr_count, int bad_bit) {
  int runs = 10;
  int sum_time = 0;
  for (int i = 0; i < runs; i++)
    sum_time += timing(addr_count, bad_bit);
  return sum_time / runs;
}

} // namespace

int main() {
  init_pagemap();

  // Turn off stdout caching.
  setvbuf(stdout, NULL, _IONBF, 0);

  // For a 12-way cache, we want to pick 13 addresses belonging to the
  // same cache set.  Measure the effect of picking more addresses to
  // test whether in_same_cache_set() is correctly determining whether
  // addresses belong to the same cache set.
  int max_addr_count = 9 * 4;//cpu是8way的,这用9

  bool test_bad_bits = true;

  printf("Address count");
  printf(",Baseline hash (no bits changed)");
  if (test_bad_bits) {
    for (int bad_bit = 17; bad_bit < 32; bad_bit++) {
      printf(",Change bit %i", bad_bit);
    }
  }
  printf("\n");

  for (int addr_count = 0; addr_count < max_addr_count; addr_count++) {
    printf("%i", addr_count);
    printf(",%i", timing_mean(addr_count, -1));
    if (test_bad_bits) {
      for (int bad_bit = 17; bad_bit < 32; bad_bit++) {
        printf(",%i", timing_mean(addr_count, bad_bit));
      }
    }
    printf("\n");
  }
  return 0;
}

参考:http://lackingrhoticity.blogspot.com/2015/04/l3-cache-mapping-on-sandy-bridge-cpus.html   L3 cache mapping on Sandy Bridge CPUs

      https://zhuanlan.zhihu.com/p/102293437   Cache的基本原理

最后整理了一个脑图,方便串联理解各个要点:

技术分享图片

 

intel:spectre&Meltdown侧信道攻击(四)—— cache mapping

原文:https://www.cnblogs.com/theseventhson/p/13341975.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!