MarchingCubes(移动立方体)算法是目前三围数据长等值面生成中最常用的方法。它实际上是一个分而治之的方法,把等值面的抽取分布于每个体素中进行。对于每个被处理的体素,以三角面片逼近其内部的等值面片。每个体素是一个小立方体,构造三角片的处理过程对每个体素都“扫描”一遍,就好像一个处理器在这些体素上移动一样,由此得名移动立方体算法。
MC算法主要有三步:1.将点云数据转换为体素网格数据;2.使用线性插值对每个体素抽取等值面;3.对等值面进行网格三角化
PCL中使用MarchingCubesHoppe类进行三维重建执行的函数体为performReconstruction(),其代码如下:
template <typename PointNT> void
pcl::MarchingCubes<PointNT>::performReconstruction (pcl::PolygonMesh &output)
{
if (!(iso_level_ >= 0 && iso_level_ < 1))
{
PCL_ERROR ("[pcl::%s::performReconstruction] Invalid iso level %f! Please use a number between 0 and 1.\n", getClassName ().c_str (), iso_level_);
output.cloud.width = output.cloud.height = 0;
output.cloud.data.clear ();
output.polygons.clear ();
return;
}
// Create grid
grid_ = std::vector<float> (res_x_*res_y_*res_z_, 0.0f);
// Populate tree
tree_->setInputCloud (input_);
getBoundingBox ();
// Transform the point cloud into a voxel grid
// This needs to be implemented in a child class
voxelizeData ();
// Run the actual marching cubes algorithm, store it into a point cloud,
// and copy the point cloud + connectivity into output
pcl::PointCloud<PointNT> cloud;
for (int x = 1; x < res_x_-1; ++x)
for (int y = 1; y < res_y_-1; ++y)
for (int z = 1; z < res_z_-1; ++z)
{
Eigen::Vector3i index_3d (x, y, z);
std::vector<float> leaf_node;
getNeighborList1D (leaf_node, index_3d);
createSurface (leaf_node, index_3d, cloud);
}
pcl::toPCLPointCloud2 (cloud, output.cloud);
output.polygons.resize (cloud.size () / 3);
for (size_t i = 0; i < output.polygons.size (); ++i)
{
pcl::Vertices v;
v.vertices.resize (3);
for (int j = 0; j < 3; ++j)
v.vertices[j] = static_cast<int> (i) * 3 + j;
output.polygons[i] = v;
}
}
可以看出PCL将会产生res_x_ * res_y_ * res_z_个网格,即为Resolution分辨率。voxelizeData ();即将点云数据转换为体素网格数据,其实现如下:
template <typename PointNT> void
pcl::MarchingCubesHoppe<PointNT>::voxelizeData ()
{
for (int x = 0; x < res_x_; ++x)
for (int y = 0; y < res_y_; ++y)
for (int z = 0; z < res_z_; ++z)
{
std::vector<int> nn_indices;
std::vector<float> nn_sqr_dists;
Eigen::Vector3f point;
point[0] = min_p_[0] + (max_p_[0] - min_p_[0]) * float (x) / float (res_x_);
point[1] = min_p_[1] + (max_p_[1] - min_p_[1]) * float (y) / float (res_y_);
point[2] = min_p_[2] + (max_p_[2] - min_p_[2]) * float (z) / float (res_z_);
PointNT p;
p.getVector3fMap () = point;
tree_->nearestKSearch (p, 1, nn_indices, nn_sqr_dists);
grid_[x * res_y_*res_z_ + y * res_z_ + z] = input_->points[nn_indices[0]].getNormalVector3fMap ().dot (
point - input_->points[nn_indices[0]].getVector3fMap ());
}
}
该函数对每个体素网格数据进行赋值,其值为一符号距离函数值,其定义为:f(Pi) = (Oi - Pi) * N(Pi), 这里Pi为给定的点,Oi为Pi周围K近邻点集(属于输入点云)的中心, N(Pi)为点Pi的法向量,中间的*为数量级;求出的值其实是点Oi到过点Pi的有向切平面的距离,图示如下:
点q处的法向量是单位法向量,所以点q到切平面的距离是dot(N(p), vec(p, q))
从代码中可以看出,这里的K = 1,即求出最近邻点。
文章参考于:http://www.doc88.com/p-5475997688638.html
http://paulbourke.net/geometry/polygonise/
http://books.google.com.hk/books?id=4k4kvDwP-lgC&printsec=frontcover&hl=zh-CN#v=onepage&q&f=false
原文:http://blog.csdn.net/lming_08/article/details/19432877