文本分类这个系列将会有8篇左右文章,从github直接下载代码,从百度云下载训练数据,在pycharm上导入即可使用,包括基于word2vec预训练的文本分类,与及基于近几年的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列:
word2vec预训练词向量
textCNN 模型
charCNN 模型
Bi-LSTM 模型
Bi-LSTM + Attention 模型
Transformer 模型
ELMo 预训练模型
BERT 预训练模型
数据集为IMDB 电影影评,总共有三个数据文件,在/data/rawData目录下,包括unlabeledTrainData.tsv,labeledTrainData.tsv,testData.tsv。在进行文本分类时需要有标签的数据(labeledTrainData),但是在训练word2vec词向量模型(无监督学习)时可以将无标签的数据一起用上。
训练数据地址:链接:https://pan.baidu.com/s/1-XEwx1ai8kkGsMagIFKX_g 提取码:rtz8
IMDB 电影影评属于英文文本,本序列主要是文本分类的模型介绍,因此数据预处理比较简单,只去除了各种标点符号,HTML标签,小写化等。 使用pandas直接处理数据,建议使用apply方法,处理速度比较快,数据处理完之后将有标签和无标签的数据合并,并保存成txt文件,放在了preProcess里面。
代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 ? | import pandas as pd from bs4 import BeautifulSoup #灵活又方便的网页解析库,处理高效,支持多种解析器。利用它不用编写正则表达式即可方便地实现网页信息的提取。 # IMDB 电影影评属于英文文本,本序列主要是文本分类的模型介绍,因此数据预处理比较简单, # 只去除了各种标点符号,HTML标签,小写化等。代码如下: With open ("../data/rawData/unlabeledTrainData.tsv", "r", encoding=‘UTF-8‘) as f: unlabeledTrain = [line.strip().split("\t") for line in f.readlines() if len(line.strip().split("\t")) == 2] ? ? with open("../data/rawData/labeledTrainData.tsv", "r", encoding=‘UTF-8‘) as f: labeledTrain = [line.strip().split("\t") for line in f.readlines() if len(line.strip().split("\t")) == 3] ? ? unlabel = pd.DataFrame(unlabeledTrain[1:], columns=unlabeledTrain[0]) label = pd.DataFrame(labeledTrain[1:], columns=labeledTrain[0]) #多一列数据 sentiment (0/1) # print("```````````") # print(unlabeledTrain) # print(label) def cleanReview(subject): # 数据处理函数 beau = BeautifulSoup(subject) newSubject = beau.get_text() newSubject = newSubject.replace("\\", "").replace("\‘", "").replace(‘/‘,‘‘).replace(‘"‘, ‘‘).replace(‘,‘, ‘‘).replace(‘.‘, ‘‘).replace(‘?‘, ‘‘).replace(‘(‘, ‘‘).replace(‘)‘, ‘‘) newSubject = newSubject.strip().split(" ") newSubject = [word.lower() for word in newSubject] newSubject = " ".join(newSubject) return newSubject ? ? unlabel["review"] = unlabel["review"].apply(cleanReview) label["review"] = label["review"].apply(cleanReview) ? ? # 将有标签的数据和无标签的数据合并 newDf = pd.concat([unlabel["review"], label["review"]], axis=0) # 保存成txt文件 newDf.to_csv("../data/preProcess/wordEmbdiing.txt", index=False) |
关于word2vec模型的介绍见这篇。我们使用gensim中的word2vec API来训练模型。官方API介绍如下:
class gensim.models.word2vec.Word2Vec(sentences=None, corpus_file=None, size=100, alpha=0.025, window=5, min_count=5, max_vocab_size=None, sample=0.001, seed=1, workers=3, min_alpha=0.0001, sg=0, hs=0, negative=5, ns_exponent=0.75, cbow_mean=1, hashfxn=<built-in function hash>, iter=5, null_word=0, trim_rule=None, sorted_vocab=1, batch_words=10000, compute_loss=False, callbacks=(), max_final_vocab=None)
1) sentences:我们要分析的语料,可以是一个列表,或者从文件中遍历读出(word2vec.LineSentence(filename) )。
2) size:词向量的维度,默认值是100。这个维度的取值一般与我们的语料的大小相关,如果是不大的语料,比如小于100M的文本语料,则使用默认值一般就可以了。如果是超大的语料,建议增大维度。
3) window:即词向量上下文最大距离,window越大,则和某一词较远的词也会产生上下文关系。默认值为5,在实际使用中,可以根据实际的需求来动态调整这个window的大小。如果是小语料则这个值可以设的更小。对于一般的语料这个值推荐在[5;10]之间。
4) sg:即我们的word2vec两个模型的选择了。如果是0, 则是CBOW模型;是1则是Skip-Gram模型;默认是0即CBOW模型。
5) hs:即我们的word2vec两个解法的选择了。如果是0, 则是Negative Sampling;是1的话并且负采样个数negative大于0, 则是Hierarchical Softmax。默认是0即Negative Sampling。
6) negative:即使用Negative Sampling时负采样的个数,默认是5。推荐在[3,10]之间。这个参数在我们的算法原理篇中标记为neg。
7) cbow_mean:仅用于CBOW在做投影的时候,为0,则算法中的xw为上下文的词向量之和,为1则为上下文的词向量的平均值。在我们的原理篇中,是按照词向量的平均值来描述的。个人比较喜欢用平均值来表示xw,默认值也是1,不推荐修改默认值。
8) min_count:需要计算词向量的最小词频。这个值可以去掉一些很生僻的低频词,默认是5。如果是小语料,可以调低这个值。
9) iter:随机梯度下降法中迭代的最大次数,默认是5。对于大语料,可以增大这个值。
10) alpha:在随机梯度下降法中迭代的初始步长。算法原理篇中标记为η,默认是0.025。
11) min_alpha: 由于算法支持在迭代的过程中逐渐减小步长,min_alpha给出了最小的迭代步长值。随机梯度下降中每轮的迭代步长可以由iter,alpha, min_alpha一起得出。这部分由于不是word2vec算法的核心内容,因此在原理篇我们没有提到。
对于大语料,需要对alpha, min_alpha,iter一起调参,来选择合适的三个值。
word2vec是可以进行增量式训练的,因此可以实现
一:在输入值时可以将数据用生成器的形式导入到模型中;
二:可以将数据一个磁盘中读取出来,然后训练完保存模型;之后加载模型再从其他的磁盘上读取数据进行模型的训练。初始化模型的相似度之后,模型就无法再进行增量式训练了,相当于锁定模型了。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import logging import gensim from gensim.models import word2vec # 设置输出日志 logging.basicConfig(format=‘%(asctime)s : %(levelname)s : %(message)s‘, level=logging.INFO) # 直接用gemsim提供的API去读取txt文件,读取文件的API有LineSentence 和 Text8Corpus, PathLineSentences等。 sentences = word2vec.LineSentence("../data/preProcess/wordEmbdiing.txt") # a = list(sentences) # print(len(a)) # 训练模型,词向量的长度设置为200, 迭代次数为8,采用skip-gram模型,模型保存为bin格式 model = gensim.models.Word2Vec(sentences, size=200, sg=1, iter=8) model.wv.save_word2vec_format("./word2Vec" + ".bin", binary=True) # 加载bin格式的模型 word2Vec = gensim.models.KeyedVectors.load_word2vec_format("word2Vec.bin",binary=True) |
【1】 https://home.cnblogs.com/u/jiangxinyang/
【2】https://www.cnblogs.com/pinard/p/7278324.html
原文:https://www.cnblogs.com/yifanrensheng/p/13363387.html