Given a directed, acyclic graph of N
nodes. Find all possible paths from node 0
to node N-1
, and return them in any order.
The graph is given as follows: the nodes are 0, 1, ..., graph.length - 1. graph[i] is a list of all nodes j for which the edge (i, j) exists.
Example:
Input: [[1,2], [3], [3], []]
Output: [[0,1,3],[0,2,3]]
Explanation: The graph looks like this:
0--->1
| |
v v
2--->3
There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.
Note:
[2, 15]
.在一个有向无环图中找到所有从结点0到结点n-1的路径。
回溯法。
class Solution {
public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
List<List<Integer>> ans = new ArrayList<>();
dfs(graph, 0, graph.length - 1, new ArrayList<>(), ans);
return ans;
}
private void dfs(int[][] graph, int u, int v, List<Integer> tmp, List<List<Integer>> ans) {
tmp.add(u);
if (u == v) {
ans.add(new ArrayList<>(tmp));
} else {
for (int i = 0; i < graph[u].length; i++) {
dfs(graph, graph[u][i], v, tmp, ans);
}
}
tmp.remove(tmp.size() - 1);
}
}
0797. All Paths From Source to Target (M)
原文:https://www.cnblogs.com/mapoos/p/13375455.html