如果 A 认为 B 受欢迎,A 向 B 连边。 Tarjan 求强连通分量缩点后的图,出度为 0 的点若只有?个则 输出其代表的强连通分量的??,否则?解。
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define MAXN 10005
#define MAXM 50005
int n, m, idx, scc;
int head[MAXN], cnt;
int dfn[MAXN], low[MAXN];
int bel[MAXN], col[MAXN];
int out[MAXN];
bool flag[MAXN];
class node{
public: int nxt, to;
} edge[MAXM];
class Stack{
private:
int stk[MAXN], top;
public:
inline void Push(int x) { stk[++top] = x; return; }
inline void Pop(void) { --top; return; }
inline int Top(void) { return stk[top]; }
} Stk;
inline int read(void){
int f = 1, x = 0;char ch;
do{ch = getchar();if(ch==‘-‘)f = -1;} while (ch < ‘0‘ || ch > ‘9‘);
do{ x = (x << 1) + (x << 3) + ch - ‘0‘;ch = getchar();} while (ch >= ‘0‘ && ch <= ‘9‘);
return f * x;
}
inline int _min(int x, int y) { return x < y ? x : y; }
inline void add_edge(int x,int y){
++cnt;
edge[cnt].nxt = head[x];
edge[cnt].to = y;
head[x] = cnt;
return;
}
void tarjan(int k){
dfn[k] = low[k] = ++idx;
Stk.Push(k);
flag[k] = 1;
for (int i = head[k]; i; i=edge[i].nxt){
int v = edge[i].to;
if(!dfn[v])
tarjan(v),low[k] = _min(low[k], low[v]);
else if(flag[v])low[k] = _min(low[k], dfn[v]);
}
int now = -1;
if(dfn[k]==low[k]){
++scc;
while(now!=k){
now = Stk.Top();Stk.Pop();
flag[now] = 0;
bel[now] = scc;
++col[scc];
}
}
}
int main(){
n = read(), m = read();
for (int i = 1; i <= m;++i){
int u = read(), v = read();
add_edge(u, v);
}
for (int i = 1; i <= n;++i)
if(!dfn[i]) tarjan(i);
for (int i = 1; i <= n;++i){
for (int j = head[i]; j;j=edge[j].nxt){
int v = edge[j].to;
if(bel[i]!=bel[v]) ++out[bel[i]];
}
}
for (int i = 1; i <= n;++i)
printf("%d %d\n", dfn[i], low[i]);
int res = 0;
for (int i = 1; i <= scc;++i){
if(!out[i]){
if(res) { puts("0"); return 0; }
res = i;
}
}
printf("%d\n", col[res]);
return 0;
}
Luogu P2341 [USACO03FALL][HAOI2006]受欢迎的牛 G
原文:https://www.cnblogs.com/ShadowFlowhyc/p/13380893.html