首页 > 其他 > 详细

第三节 矩阵乘法和逆

时间:2020-07-27 09:36:53      阅读:76      评论:0      收藏:0      [点我收藏+]

矩阵乘法和逆

矩阵乘法

  1. 第一种方法(一般方法):

假设有矩阵等式\(C=AB\)

\({ \left[ {{\left. \begin{array}{*{20}{l}} {a\mathop{{}}\nolimits_{{11}}\text{?}\text{?}a\mathop{{}}\nolimits_{{12}}\text{?}\text{?}a\mathop{{}}\nolimits_{{13}}\text{?}\text{?}a\mathop{{}}\nolimits_{{14}}}\ {a\mathop{{}}\nolimits_{{21}}\text{?}\text{?}a\mathop{{}}\nolimits_{{22}}\text{?}\text{?}a\mathop{{}}\nolimits_{{23}}\text{?}\text{?}a\mathop{{}}\nolimits_{{24}}}\ {a\mathop{{}}\nolimits_{{31}}\text{?}\text{?}a\mathop{{}}\nolimits_{{32}}\text{?}\text{?}a\mathop{{}}\nolimits_{{33}}\text{?}\text{?}a\mathop{{}}\nolimits_{{34}}}\ {a\mathop{{}}\nolimits_{{41}}\text{?}\text{?}a\mathop{{}}\nolimits_{{42}}\text{?}\text{?}a\mathop{{}}\nolimits_{{43}}\text{?}\text{?}a\mathop{{}}\nolimits_{{44}}} \end{array} \right] }{ \left[ {{\left. \begin{array}{*{20}{l}} {b\mathop{{}}\nolimits_{{11}}\text{?}\text{?}b\mathop{{}}\nolimits_{{12}}\text{?}\text{?}b\mathop{{}}\nolimits_{{13}}\text{?}\text{?}b\mathop{{}}\nolimits_{{14}}}\ {b\mathop{{}}\nolimits_{{21}}\text{?}\text{?}b\mathop{{}}\nolimits_{{22}}\text{?}\text{?}b\mathop{{}}\nolimits_{{23}}\text{?}\text{?}b\mathop{{}}\nolimits_{{24}}}\ {b\mathop{{}}\nolimits_{{31}}\text{?}\text{?}b\mathop{{}}\nolimits_{{32}}\text{?}\text{?}b\mathop{{}}\nolimits_{{33}}\text{?}\text{?}b\mathop{{}}\nolimits_{{34}}}\ {b\mathop{{}}\nolimits_{{41}}\text{?}\text{?}b\mathop{{}}\nolimits_{{42}}\text{?}\text{?}b\mathop{{}}\nolimits_{{43}}\text{?}\text{?}b\mathop{{}}\nolimits_{{44}}} \end{array} \right] }={ \left[ {{\left. \begin{array}{*{20}{l}} {c\mathop{{}}\nolimits_{{11}}\text{?}\text{?}c\mathop{{}}\nolimits_{{12}}\text{?}\text{?}c\mathop{{}}\nolimits_{{13}}\text{?}\text{?}c\mathop{{}}\nolimits_{{14}}}\ {c\mathop{{}}\nolimits_{{21}}\text{?}\text{?}c\mathop{{}}\nolimits_{{22}}\text{?}\text{?}c\mathop{{}}\nolimits_{{23}}\text{?}\text{?}c\mathop{{}}\nolimits_{{24}}}\ {c\mathop{{}}\nolimits_{{31}}\text{?}\text{?}c\mathop{{}}\nolimits_{{32}}\text{?}\text{?}c\mathop{{}}\nolimits_{{33}}\text{?}\text{?}c\mathop{{}}\nolimits_{{34}}}\ {c\mathop{{}}\nolimits_{{41}}\text{?}\text{?}c\mathop{{}}\nolimits_{{42}}\text{?}\text{?}c\mathop{{}}\nolimits_{{43}}\text{?}\text{?}c\mathop{{}}\nolimits_{{44}}} \end{array} \right] }}\right. }}\right. }}\right. }\)

\({c\mathop{{}}\nolimits_{{ij}}}=矩阵A的行i?矩阵B的列j\)

即:\({c\mathop{{}}\nolimits_{{ij}}=a\mathop{{}}\nolimits_{{i1}}b\mathop{{}}\nolimits_{{1j}}+a\mathop{{}}\nolimits_{{i2}}b\mathop{{}}\nolimits_{{2j}}+a\mathop{{}}\nolimits_{{i3}}b\mathop{{}}\nolimits_{{3j}}+\text{ …… }+a\mathop{{}}\nolimits_{{ik}}b\mathop{{}}\nolimits_{{kj}}={\mathop{ \sum }\limits_{{k=1}}^{{n}}{a\mathop{{}}\nolimits_{{ik}}b\mathop{{}}\nolimits_{{kj}}}}}\)

从上面的式子看出,要使两个矩阵能够相乘,矩阵\(A\)的列要等于矩阵\(B\)的行。并且可以看出矩阵\(C\)的行是由矩阵\(A\)决定,列是由矩阵\(B\)决定,

一个\(m?n\)\(A\)矩阵,和一个\(n?p\)\(B\)矩阵相乘,将得到一个\(m?p\)的矩阵\(C\)

  1. 第二种方法(整列考虑):

    用矩阵\(A\)乘以矩阵\(B\)的每一列(即矩阵乘以向量,方法第一节提到过),得到的矩阵\(C\)的每一列都是矩阵\(A\)各列的线性组合

  2. 第三种方法(整行考虑):B

    用矩阵\(A\)的每一行乘以矩阵\(B\)(即向量乘以矩阵,方法第一节提到过),得到的矩阵\(C\)的每一行都是矩阵\(B\)各行的线性组合

回到上节留下的问题
\({\begin{array}{*{20}{l}} {E\mathop{{}}\nolimits_{{32}} \left( E\mathop{{}}\nolimits_{{21}}A \left) =U\right. \right. }\ {E\mathop{{}}\nolimits_{{32}}={ \left[ {{\left. \begin{array}{*{20}{l}} {1\text{?}\text{?}0\text{?}\text{?}0}\ {0\text{?}\text{?}1\text{?}\text{?}0}\ {0\text{?}-4\text{?}1} \end{array} \right] }\text{?}\text{?}\text{?}\text{?}E\mathop{{}}\nolimits_{{21}}={ \left[ {{\left. \begin{array}{*{20}{l}} {1\text{?}\text{?}0\text{?}\text{?}0}\ {-3\text{?}1\text{?}\text{?}0}\ {0\text{?}\text{?}0\text{?}\text{?}1} \end{array} \right] }}\right. }}\right. }}\ {E\mathop{{}}\nolimits_{{32}}E\mathop{{}}\nolimits_{{21}}={ \left[ {{\left. \begin{array}{*{20}{l}} {1\text{?}\text{?}0\text{?}\text{?}0}\ {0\text{?}\text{?}1\text{?}\text{?}0}\ {0\text{?}\text{?}0\text{?}\text{?}1} \end{array} \right] }=I}\right. }} \end{array}}\)

\(EA=I\)

矩阵的逆

如果矩阵\(A\)满足:\({{A\mathop{{}}\nolimits^{{-1}}}A=AA\mathop{{}}\nolimits^{{-1}}=I}\),那么矩阵\(A\)就是可逆的

\({A\mathop{{}}\nolimits^{{-1}}}\)表示矩阵\(A\)的逆矩阵。\(I\)表示单位矩阵,因为单位矩阵是方阵,所以可逆矩阵都是方阵

接下来观察不可逆的矩阵,例:

\({A={ \left[ {{\left. \begin{array}{*{20}{l}} {1\text{?}\text{?}3}\{2\text{?}\text{?}6} \end{array} \right] }}\right. }}\)

  1. 那么矩阵\(A\)为什么是不可逆的?

    1. 矩阵\(A\)的行列式等于\(0\)(后面会讲行列式)

    2. 刚才提到,如果矩阵可逆,那么它与逆矩阵相乘结果是单位矩阵,刚才讲到矩阵相乘,如果从整列考虑,结果应该与矩阵\(A\)成线性关系,但矩阵\(A\)的每一列不可能与单位矩阵的每一列成线性关系

    3. 如果能找到一个向量\(X\),使\(AX=0(X \neq 0)\),那么这个矩阵就是不可逆的,比如:

      \({A={ \left[ {{\left. \begin{array}{*{20}{l}} {1\text{?}\text{?}3}\{2\text{?}\text{?}6} \end{array} \right] }{ \left[ {{\left. \begin{array}{*{20}{l}} {3}\{-1} \end{array} \right] }={ \left[ {{\left. \begin{array}{*{20}{l}} {0}\{0} \end{array} \right] }}\right. }}\right. }}\right. }}\)

      如果矩阵\(A\)是可逆矩阵,那么向量\(X\)一定为\(0\),所以要求\(X \neq 0\)

  2. 怎么求矩阵的逆?

    例:\({\begin{array}{*{20}{l}} {{ \left[ {{\left. \begin{array}{*{20}{l}} {1\text{?}\text{?}3}\{2\text{?}\text{?}7} \end{array} \right] }{{ \left[ {{\left. \begin{array}{*{20}{l}} {a\text{?}\text{?}b}\{c\text{?}\text{?}d} \end{array} \right] }}\right. }={ \left[ {{\left. \begin{array}{*{20}{l}} {1\text{?}\text{?}0}\{0\text{?}\text{?}1} \end{array} \right] }}\right. }}}\right. }}\{\text{?}\text{?}\text{?}\text{?}\text{?}\text{?}\text{?}\text{?}AA\mathop{{}}\nolimits^{{-1}}=I} \end{array}}\)

    按照上节学习的消元法解线性方程组,要解这两个方程组

    \({\begin{array}{*{20}{l}} {{ \left[ {{\left. \begin{array}{*{20}{l}} {1\text{?}\text{?}3}\{2\text{?}\text{?}7} \end{array} \right] }{{ \left[ {{\left. \begin{array}{*{20}{l}} {a}\{c} \end{array} \right] }}\right. }={ \left[ {{\left. \begin{array}{*{20}{l}} {1}\{0} \end{array} \right] }}\right. }}}\right. }}\{{ \left[ {{\left. \begin{array}{*{20}{l}} {1\text{?}\text{?}3}\{2\text{?}\text{?}7} \end{array} \right] }{{ \left[ {{\left. \begin{array}{*{20}{l}} {b}\{d} \end{array} \right] }}\right. }={ \left[ {{\left. \begin{array}{*{20}{l}} {0}\{1} \end{array} \right] }}\right. }}}\right. }} \end{array}}\)

    利用高斯-若尔当消元法(Gauss-Jordan Elimination),没必要一个一个解这两个方程组,可以把系数矩阵和由两个右侧向量组成的矩阵再组成一个大矩阵

    \({ \left[ {{\left. \begin{array}{*{20}{l}} {1\text{?}\text{?}3\text{?}\text{?}1\text{?}\text{?}0}\{2\text{?}\text{?}7\text{?}\text{?}0\text{?}\text{?}1} \end{array} \right] }}\right. } \xrightarrow { \left( 2,1 \right) }{ \left[ {{\left. \begin{array}{*{20}{l}} {1\text{?}\text{?}3\text{?}\text{?}\text{?}\text{?}1\text{?}\text{?}0}\{0\text{?}\text{?}1\text{?}\text{?}-2\text{?}\text{?}1} \end{array} \right] }}\right. }\)

    按照上节消元法,到这一步就完了,高斯-若尔当消元法增加了一步,消去(1,2),则结果为:

    \({ \left[ {{\left. \begin{array}{*{20}{l}} {1\text{?}\text{?}0\text{?}\text{?}7\text{?}\text{?}-3}\{0\text{?}\text{?}1\text{?}-2\text{?}\text{?}\text{?}1} \end{array} \right] }}\right. }\)

    可以检验\({ \left[ {{\left. \begin{array}{*{20}{l}} {\text{?}7\text{?}\text{?}-3}\{-2\text{?}\text{?}\text{?}1} \end{array} \right] }}\right. }\)就是矩阵\(A\)的逆矩阵

    对于可逆矩阵,\(EA=I,AA\mathop{{}}\nolimits^{{-1}}=I\),那么\(E=A\mathop{{}}\nolimits^{{-1}}\),即高斯-若尔当消元法所引入的一些\(E\)的积就是\(A\)的逆矩阵

第三节 矩阵乘法和逆

原文:https://www.cnblogs.com/LuckyZhq/p/13382481.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!