一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
例如,上图是一个7 x 3 的网格。有多少可能的路径?
示例 1:
输入: m = 3, n = 2 输出: 3 解释: 从左上角开始,总共有 3 条路径可以到达右下角。 1. 向右 -> 向右 -> 向下 2. 向右 -> 向下 -> 向右 3. 向下 -> 向右 -> 向右
示例 2:
输入: m = 7, n = 3
输出: 28
提示:
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/unique-paths
思路:
一种与上一题类似,每次都记录到当前位置的有几种叠加
class Solution { public int uniquePaths(int m, int n) { int[] dp = new int[n]; Arrays.fill(dp, 1); for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { dp[j] = dp[j] + dp[j - 1]; } } return dp[n - 1]; } }
另一种用排列组合的方法
这是一个组合问题。机器人总共移动的次数 S=m+n-2,向下移动的次数 D=m-1,那么问题可以看成从 S 中取出 D 个位置的组合数量,这个问题的解为 C(S, D)。
class Solution { public int uniquePaths(int m, int n) { int S = m + n - 2; // 总共的移动次数 int D = m - 1; // 向下的移动次数 long ret = 1; for (int i = 1; i <= D; i++) { ret = ret * (S - D + i) / i; } return (int) ret; } }
原文:https://www.cnblogs.com/zzxisgod/p/13384972.html