首页 > 其他 > 详细

712. Minimum ASCII Delete Sum for Two Strings

时间:2020-07-28 13:25:57      阅读:55      评论:0      收藏:0      [点我收藏+]

Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal.

Example 1:

Input: s1 = "sea", s2 = "eat"
Output: 231
Explanation: Deleting "s" from "sea" adds the ASCII value of "s" (115) to the sum.
Deleting "t" from "eat" adds 116 to the sum.
At the end, both strings are equal, and 115 + 116 = 231 is the minimum sum possible to achieve this.

 

Example 2:

Input: s1 = "delete", s2 = "leet"
Output: 403
Explanation: Deleting "dee" from "delete" to turn the string into "let",
adds 100[d]+101[e]+101[e] to the sum.  Deleting "e" from "leet" adds 101[e] to the sum.
At the end, both strings are equal to "let", and the answer is 100+101+101+101 = 403.
If instead we turned both strings into "lee" or "eet", we would get answers of 433 or 417, which are higher.

 

Note:

  • 0 < s1.length, s2.length <= 1000.
  • All elements of each string will have an ASCII value in [97, 122].
class Solution {
    public int minimumDeleteSum(String s1, String s2) {
        int m = s1.length();
        int n = s2.length();
        int[][] dp = new int[m + 1][n + 1];
        // Initialization of first row and first col
        for (int i = 1; i <= m; i++) {
            dp[i][0] = dp[i - 1][0] + s1.charAt(i - 1);
        }
        for (int j = 1; j <= n; j++) {
            dp[0][j] = dp[0][j - 1] + s2.charAt(j - 1);
        }
        // dp
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (s1.charAt(i - 1) == s2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = Math.min(dp[i - 1][j] + s1.charAt(i - 1), dp[i][j - 1] + s2.charAt(j - 1));
                }
            }
        }
        return dp[m][n];
    }
}

初始化,然后如果两个char相等说明不用delete,用上一个的值。如果不相等,删除s1和s2中小的那一个char。

712. Minimum ASCII Delete Sum for Two Strings

原文:https://www.cnblogs.com/wentiliangkaihua/p/13390307.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!