无向图求欧拉回路:
1、图连通
2、所有顶点的度数位偶数
#include <cstdio>
#include <cstring>
#include <stack>
#include <queue>
#include <algorithm>
using namespace std;
const int mt = 2000;
const int ms = 50;
bool vis[mt+5];
int g[ms][mt+5];
int deg[ms+5];
int f[ms+5];
stack<int> s;
int street, startv;
int findset(int x){
return f[x]==x?f[x]:f[x]=findset(f[x]);
}
void Union(int x, int y){
int fx = findset(x);
int fy = findset(y);
if(fx!=fy){
f[fx] = fy;
}
}
bool used[ms];
bool check(){
for(int i=1,cnt=0; i<=ms; ++i) if(used[i]){
if(deg[i]&1) return false;
if(f[i]==i){
if(cnt++==1) return false;
}
}
return true;
}
void euler(int u){
for(int i=1; i<=street; ++i) if(g[u][i]){
if(!vis[i]){
vis[i] = 1;
euler(g[u][i]);
s.push(i);
}
}
}
//ps:其实给出的图已经连通。。。。
int main()
{
int x, y, z;
while(~scanf("%d%d", &x, &y)){
if(x==0&&y==0) break;
scanf("%d", &z);
memset(g, 0, sizeof g );
for(int i=0; i<=ms; ++i) f[i] = i;
memset(used, 0, sizeof used );
memset(deg, 0, sizeof deg );
street = z;
startv = min(x, y);
deg[x]++; deg[y]++;
g[x][z] = y;
g[y][z] = x;
Union(x, y);
used[x] = used[y] = 1;
while(~scanf("%d%d", &x, &y)){
if(x==0&&y==0) break;
scanf("%d", &z);
street = max(z, street);
deg[x]++; deg[y]++;
g[x][z] = y;
g[y][z] = x;
Union(x, y);
used[x] = used[y] = 1;
}
if(!check()){
puts("Round trip does not exist.");
continue;
} else {
memset(vis, 0, sizeof vis );
euler(startv);
while(!s.empty()){
printf("%d ", s.top());
s.pop();
}
printf("\n");
}
}
return 0;
}
poj1041 John's trip,无向图求欧拉回路路径
原文:http://blog.csdn.net/yew1eb/article/details/39297135