首页 > 编程语言 > 详细

python-2

时间:2020-07-30 09:58:12      阅读:76      评论:0      收藏:0      [点我收藏+]

python-2.md

ref: 这是小白的Python新手教程

函数式编程

函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计。函数就是面向过程的程序设计的基本单元。

而函数式编程(请注意多了一个“式”字)——Functional Programming,
虽然也可以归结到面向过程的程序设计,但其思想更接近数学计算。

我们首先要搞明白计算机(Computer)和计算(Compute)的概念。

在计算机的层次上,CPU执行的是加减乘除的指令代码,以及各种条件判断和跳转指令,所以,汇编语言是最贴近计算机的语言。

而计算则指数学意义上的计算,越是抽象的计算,离计算机硬件越远。

对应到编程语言,就是越低级的语言,越贴近计算机,抽象程度低,执行效率高,比如C语言;越高级的语言,越贴近计算,抽象程度高,执行效率低,比如Lisp语言。

函数式编程就是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用。而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的。

函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数!

Python对函数式编程提供部分支持。
由于Python允许使用变量,因此,Python不是纯函数式编程语言。

高阶函数

高阶函数英文叫Higher-order function
什么是高阶函数?我们以实际代码为例子,一步一步深入概念。

变量可以指向函数

以Python内置的求绝对值的函数abs()为例,调用该函数用以下代码:

>>> abs(-10)
10

但是,如果只写abs呢?

>>> abs
<built-in function abs>

可见,abs(-10)是函数调用,而abs是函数本身。

要获得函数调用结果,我们可以把结果赋值给变量:

>>> x = abs(-10)
>>> x
10

但是,如果把函数本身赋值给变量呢?

>>> f = abs
>>> f
<built-in function abs>

结论:函数本身也可以赋值给变量,即:变量可以指向函数。

如果一个变量指向了一个函数,那么,可否通过该变量来调用这个函数?用代码验证一下:

>>> f = abs
>>> f(-10)
10

成功!说明变量f现在已经指向了abs函数本身。
直接调用abs()函数和调用变量f()完全相同。

函数名也是变量

那么函数名是什么呢?函数名其实就是指向函数的变量!
对于abs()这个函数,完全可以把函数名abs看成变量,
它指向一个可以计算绝对值的函数!

如果把abs指向其他对象,会有什么情况发生?

>>> abs = 10
>>> abs(-10)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: ‘int‘ object is not callable

abs指向10后,就无法通过abs(-10)调用该函数了!
因为abs这个变量已经不指向求绝对值函数而是指向一个整数10

当然实际代码绝对不能这么写,这里是为了说明函数名也是变量。
要恢复abs函数,请重启Python交互环境。

注:由于abs函数实际上是定义在import builtins模块中的,
所以要让修改abs变量的指向在其它模块也生效,要用import builtins; builtins.abs = 10

传入函数

既然变量可以指向函数,函数的参数能接收变量,
那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数。

一个最简单的高阶函数:

def add(x, y, f):
    return f(x) + f(y)

当我们调用add(-5, 6, abs)时,
参数xy和f分别接收-56abs
根据函数定义,我们可以推导计算过程为:

x = -5
y = 6
f = abs
f(x) + f(y) ==> abs(-5) + abs(6) ==> 11
return 11

用代码验证一下:

# -*- coding: utf-8 -*-

def add(x, y, f):
    return f(x) + f(y)

print(add(-5, 6, abs))

编写高阶函数,就是让函数的参数能够接收别的函数。

小结-高阶函数

把函数作为参数传入,这样的函数称为高阶函数,
函数式编程就是指这种高度抽象的编程范式。

map/reduce

Python内建了map()reduce()函数。

如果你读过Google的那篇大名鼎鼎的论文“MapReduce: Simplified Data Processing on Large Clusters”,你就能大概明白map/reduce的概念。

map

我们先看map。map()函数接收两个参数,一个是函数,一个是Iterable
map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。

举例说明,比如我们有一个函数f(x)=x2
要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]上,
就可以用map()实现,
我们用Python代码实现:

>>> def f(x):
...     return x * x
...
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]

map()传入的第一个参数是f,即函数对象本身。由于结果r是一个IteratorIterator是惰性序列,因此通过list()函数让它把整个序列都计算出来并返回一个list

你可能会想,不需要map()函数,写一个循环,也可以计算出结果:

L = []
for n in [1, 2, 3, 4, 5, 6, 7, 8, 9]:
    L.append(f(n))
print(L)

的确可以,但是,从上面的循环代码,能一眼看明白“把f(x)作用在list的每一个元素并把结果生成一个新的list”吗?

所以,map()作为高阶函数,事实上它把运算规则抽象了,因此,我们不但可以计算简单的f(x)=x2,还可以计算任意复杂的函数,比如,把这个list所有数字转为字符串:

>>> list(map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
[‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘, ‘6‘, ‘7‘, ‘8‘, ‘9‘]

只需要一行代码。

reduce

再看reduce的用法。reduce把一个函数作用在一个序列[x1, x2, x3, ...]上,这个函数必须接收两个参数,
reduce把结果继续和序列的下一个元素做累积计算,其效果就是:

reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)

比方说对一个序列求和,就可以用reduce实现:

>>> from functools import reduce
>>> def add(x, y):
...     return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25

当然求和运算可以直接用Python内建函数sum(),没必要动用reduce
但是如果要把序列[1, 3, 5, 7, 9]变换成整数13579reduce就可以派上用场:

>>> from functools import reduce
>>> def fn(x, y):
...     return x * 10 + y
...
>>> reduce(fn, [1, 3, 5, 7, 9])
13579

这个例子本身没多大用处,但是,如果考虑到字符串str也是一个序列,对上面的例子稍加改动,配合map(),我们就可以写出把str转换为int的函数:

>>> from functools import reduce
>>> def fn(x, y):
...     return x * 10 + y
...
>>> def char2num(s):
...     digits = {‘0‘: 0, ‘1‘: 1, ‘2‘: 2, ‘3‘: 3, ‘4‘: 4, ‘5‘: 5, ‘6‘: 6, ‘7‘: 7, ‘8‘: 8, ‘9‘: 9}
...     return digits[s]
...
>>> reduce(fn, map(char2num, ‘13579‘))
13579

整理成一个str2int的函数就是:

from functools import reduce

DIGITS = {‘0‘: 0, ‘1‘: 1, ‘2‘: 2, ‘3‘: 3, ‘4‘: 4, ‘5‘: 5, ‘6‘: 6, ‘7‘: 7, ‘8‘: 8, ‘9‘: 9}

def str2int(s):
    def fn(x, y):
        return x * 10 + y
    def char2num(s):
        return DIGITS[s]
    return reduce(fn, map(char2num, s))

还可以用lambda函数进一步简化成:

from functools import reduce

DIGITS = {‘0‘: 0, ‘1‘: 1, ‘2‘: 2, ‘3‘: 3, ‘4‘: 4, ‘5‘: 5, ‘6‘: 6, ‘7‘: 7, ‘8‘: 8, ‘9‘: 9}

def char2num(s):
    return DIGITS[s]

def str2int(s):
    return reduce(lambda x, y: x * 10 + y, map(char2num, s))

也就是说,假设Python没有提供int()函数,你完全可以自己写一个把字符串转化为整数的函数,而且只需要几行代码!

lambda函数的用法在后面介绍。

练习-map-reduce-1

利用map()函数,把用户输入的不规范的英文名字,变为首字母大写,
其他小写的规范名字。
输入:[‘adam‘, ‘LISA‘, ‘barT‘],输出:[‘Adam‘, ‘Lisa‘, ‘Bart‘]

# -*- coding: utf-8 -*-
def normalize(name):
    return s=s[0].upper()+s[1:].lower()

 # 测试:
L1 = [‘adam‘, ‘LISA‘, ‘barT‘]
L2 = list(map(normalize, L1))
print(L2)

练习-map-reduce-2

Python提供的sum()函数可以接受一个list并求和,
请编写一个prod()函数,可以接受一个list并利用reduce()求积:

# -*- coding: utf-8 -*-
from functools import reduce
def prod(L):
    def times(a,b):
        return a*b
    return reduce(times,L)

print(‘3 * 5 * 7 * 9 =‘, prod([3, 5, 7, 9]))
if prod([3, 5, 7, 9]) == 945:
    print(‘测试成功!‘)
else:
    print(‘测试失败!‘)

练习-map-reduce-3

利用map和reduce编写一个str2float函数,把字符串‘123.456‘转换成浮点数123.456

# -*- coding: utf-8 -*-
from functools import reduce
import math

def str2float(s):
    dgdict= {‘0‘: 0, ‘1‘: 1, ‘2‘: 2, ‘3‘: 3, ‘4‘: 4, ‘5‘: 5, ‘6‘: 6, ‘7‘: 7, ‘8‘: 8, ‘9‘: 9}
    dot=len(s)-s.index(‘.‘)-1
    new_s=s.replace(‘.‘,‘‘)
    def fn(x, y):
        return x * 10 + y
    def char2num(s2):
        return dgdict[s2]
    s_int=reduce(fn, map(char2num, new_s))
    return s_int/(math.pow(10,dot))


# 测试
print(‘str2float(\‘123.456\‘) =‘, str2float(‘123.456‘))
if abs(str2float(‘123.456‘) - 123.456) < 0.00001:
    print(‘测试成功!‘)
else:
    print(‘测试失败!‘)

filter

Python内建的filter()函数用于过滤序列。

map()类似,filter()也接收一个函数和一个序列。
和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。

‘‘ 空字符串被视为False

例如,在一个list中,删掉偶数,只保留奇数,可以这么写:

def is_odd(n):
    return n % 2 == 1

list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]

把一个序列中的空字符串删掉,可以这么写:

def not_empty(s):
    return s and s.strip()

list(filter(not_empty, [‘A‘, ‘‘, ‘B‘, None, ‘C‘, ‘  ‘]))
# 结果: [‘A‘, ‘B‘, ‘C‘]

可见用filter()这个高阶函数,关键在于正确实现一个“筛选”函数。

注意到filter()函数返回的是一个Iterator,也就是一个惰性序列,所以要强迫filter()完成计算结果,需要用list()函数获得所有结果并返回list。
用filter求素数

计算素数的一个方法是埃氏筛法,它的算法理解起来非常简单:

首先,列出从2开始的所有自然数,构造一个序列:
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...

取序列的第一个数2,它一定是素数,然后用2把序列的2的倍数筛掉:
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...

取新序列的第一个数3,它一定是素数,然后用3把序列的3的倍数筛掉:
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...

不断筛下去,就可以得到所有的素数。

用Python来实现这个算法,可以先构造一个从3开始的奇数序列:

def _odd_iter():
    n = 1
    while True:
        n = n + 2
        yield n

注意这是一个生成器,并且是一个无限序列。

然后定义一个筛选函数:

def _not_divisible(n):
    return lambda x: x % n > 0

lambda 表达式 即匿名函数

最后,定义一个生成器,不断返回下一个素数:

def primes():
    yield 2
    it = _odd_iter() # 初始序列
    while True:
        n = next(it) # 返回序列的第一个数
        yield n
        it = filter(_not_divisible(n), it) # 构造新序列

这个生成器先返回第一个素数2,然后,利用filter()不断产生筛选后的新的序列。

由于primes()也是一个无限序列,所以调用时需要设置一个退出循环的条件:

# 打印1000以内的素数:
for n in primes():
    if n < 1000:
        print(n)
    else:
        break

注意到Iterator是惰性计算的序列,所以我们可以用Python表示“全体自然数”,
“全体素数”这样的序列,而代码非常简洁。

练习-filter

回数是指从左向右读和从右向左读都是一样的数,例如12321,909。请利用filter()筛选出回数:

# -*- coding: utf-8 -*-

def is_palindrome(n):
    n_rev=‘‘
    for i in str(n):
         n_rev=i+n_rev
    return str(n) == n_rev

# 测试:
output = filter(is_palindrome, range(1, 1000))
print(‘1~1000:‘, list(output))
if list(filter(is_palindrome, range(1, 200))) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191]:
    print(‘测试成功!‘)
else:
    print(‘测试失败!‘)

也可以用 字符 切片功能,把间距取为-1,会比较方便

def is_palindrome(n):
    L=list(str(n))
    return L==L[::-1]

sorted

排序算法

排序也是在程序中经常用到的算法。无论使用冒泡排序还是快速排序,排序的核心是比较两个元素的大小。如果是数字,我们可以直接比较,但如果是字符串或者两个dict呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来。

Python内置的sorted()函数就可以对list进行排序:

>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]

此外,sorted()函数也是一个高阶函数,
它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:

>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]

key指定的函数将作用于list的每一个元素上,
并根据key函数返回的结果进行排序。
对比原始的list和经过key=abs处理过的list

list = [36, 5, -12, 9, -21]
keys = [36, 5,  12, 9,  21]

然后sorted()函数按照keys进行排序,并按照对应关系返回list相应的元素:

我们再看一个字符串排序的例子:

>>> sorted([‘bob‘, ‘about‘, ‘Zoo‘, ‘Credit‘])
[‘Credit‘, ‘Zoo‘, ‘about‘, ‘bob‘]

默认情况下,对字符串排序,是按照ASCII的大小比较的,由于‘Z‘< ‘a‘,结果,大写字母Z会排在小写字母a的前面。

现在,我们提出排序应该忽略大小写,按照字母序排序。要实现这个算法,不必对现有代码大加改动,只要我们能用一个key函数把字符串映射为忽略大小写排序即可。忽略大小写来比较两个字符串,实际上就是先把字符串都变成大写(或者都变成小写),再比较。

这样,我们给sorted传入key函数,即可实现忽略大小写的排序:

>>> sorted([‘bob‘, ‘about‘, ‘Zoo‘, ‘Credit‘], key=str.lower)
[‘about‘, ‘bob‘, ‘Credit‘, ‘Zoo‘]

要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True

>>> sorted(
[‘bob‘, ‘about‘, ‘Zoo‘, ‘Credit‘],
key=str.lower,
reverse=True
)
[‘Zoo‘, ‘Credit‘, ‘bob‘, ‘about‘]

从上述例子可以看出,高阶函数的抽象能力是非常强大的,而且,核心代码可以保持得非常简洁。

小结-sorted

sorted()也是一个高阶函数。用sorted()排序的关键在于实现一个映射函数。

练习-sorted

假设我们用一组tuple表示学生名字和成绩:

L = [(‘Bob‘, 75), (‘Adam‘, 92), (‘Bart‘, 66), (‘Lisa‘, 88)]

请用sorted()对上述列表分别按名字排序:

# -*- coding: utf-8 -*-
L = [(‘Bob‘, 75), (‘Adam‘, 92), (‘Bart‘, 66), (‘Lisa‘, 88)]

def by_name(t):
    return t[0]

L2 = sorted(L, key=by_name)
print(L2)

再按成绩从高到低排序:

# -*- coding: utf-8 -*-

L = [(‘Bob‘, 75), (‘Adam‘, 92), (‘Bart‘, 66), (‘Lisa‘, 88)]

def by_score(t):
    return t[1]

L2 = sorted(L, key=by_score)
print(L2)

返回函数

函数作为返回值

高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回。

我们来实现一个可变参数的求和。通常情况下,求和的函数是这样定义的:

def calc_sum(*args):
    ax = 0
    for n in args:
        ax = ax + n
    return ax

但是,如果不需要立刻求和,而是在后面的代码中,根据需要再计算怎么办?可以不返回求和的结果,而是返回求和的函数:

def lazy_sum(*args):
    def sum():
        ax = 0
        for n in args:
            ax = ax + n
        return ax
    return sum

对于sum()这个函数,完全可以把函数名sum看成变量,
它指向一个可以计算累加的函数。

当我们调用lazy_sum()时,返回的并不是求和结果,而是求和函数:

>>> f = lazy_sum(1, 3, 5, 7, 9)
>>> f
<function lazy_sum.<locals>.sum at 0x101c6ed90>

调用函数f时,才真正计算求和的结果:

>>> f()
25

在这个例子中,我们在函数lazy_sum中又定义了函数sum
并且,内部函数sum可以引用外部函数lazy_sum的参数和局部变量,
lazy_sum返回函数sum时,相关参数和变量都保存在返回的函数中,
这种称为“闭包(Closure)”的程序结构拥有极大的威力。

请再注意一点,当我们调用lazy_sum()时,每次调用都会返回一个新的函数
即使传入相同的参数:

>>> f1 = lazy_sum(1, 3, 5, 7, 9)
>>> f2 = lazy_sum(1, 3, 5, 7, 9)
>>> f1==f2
False

f1()f2()的调用结果互不影响。

闭包

注意到返回的函数在其定义内部引用了局部变量args,所以,当一个函数返回了一个函数后,其内部的局部变量还被新函数引用,所以,闭包用起来简单,实现起来可不容易。

另一个需要注意的问题是,返回的函数并没有立刻执行,而是直到调用了f()才执行。我们来看一个例子:

def count():
    fs = []
    for i in range(1, 4):
        def f():
             return i*i
        fs.append(f)
    return fs

f1, f2, f3 = count()

在上面的例子中,每次循环,都创建了一个新的函数,然后,把创建的3个函数都返回了。
你可能认为调用f1()f2()f3()结果应该是149,但实际结果是:

>>> f1()
9
>>> f2()
9
>>> f3()
9

全部都是9!原因就在于返回的函数引用了变量i,但它并非立刻执行。
等到3个函数都返回时,它们所引用的变量i已经变成了3,因此最终结果为9

返回闭包时牢记一点:返回函数不要引用任何循环变量,或者后续会发生变化的变量。

如果一定要引用循环变量怎么办?方法是再创建一个函数,用该函数的参数绑定循环变量当前的值,无论该循环变量后续如何更改,已绑定到函数参数的值不变:

def count():
    def f(j):
        def g():
            return j*j
        return g
    fs = []
    for i in range(1, 4):
        fs.append(f(i)) # f(i)立刻被执行,因此i的当前值被传入f()
    return fs

再看看结果:

>>> f1, f2, f3 = count()
>>> f1()
1
>>> f2()
4
>>> f3()
9

缺点是代码较长,可利用lambda函数缩短代码。

练习-返回函数

利用闭包返回一个计数器函数,每次调用它返回递增整数:

# -*- coding: utf-8 -*-

def createCounter():
    def counter():
        return 1
    return counter
# -*- coding: utf-8 -*-

def createCounter():
    num=(x for x in range(1,1000,1))
    def counter():
        return next(num)
    return counter

# 测试:
counterA = createCounter()
print(counterA(), counterA(), counterA(), counterA(), counterA()) # 1 2 3 4 5
counterB = createCounter()
if [counterB(), counterB(), counterB(), counterB()] == [1, 2, 3, 4]:
    print(‘测试通过!‘)
else:
    print(‘测试失败!‘)

命名空间

ref: Python LEGB规则

#!/usr/bin/env python
# encoding: utf-8

x = 1

def foo():
    x = 2
    def innerfoo():
        x = 3                  #此处改动:注释掉
        print ‘locals ‘, x
    innerfoo()
    print ‘enclosing function locals ‘, x

foo()
print ‘global ‘, x

在上述两个例子中,从内到外,依次形成四个命名空间:

  • def innerfoo()::Local, 即函数内部命名空间;
  • def foo()::Enclosing function locals;外部嵌套函数的名字空间
  • module(文件本身):Global(module);函数定义所在模块(文件)的名字空间
  • Python内置模块的名字空间:Builtin

x = 3 属于函数内部命名空间,当被注释掉之后,函数innerfoo内部通过print x 使用x这个名称时,触发了名称查找动作。
首先在Local命名空间查找,没有找到,然后到Enclosing function locals命名空间查找,查找成功,然后调用。

如果函数接收到的是一个可变对象(dict、list),就能修改对象的原始值,
如果是不可变对象(num、str、tuple),则不能直接修改对象

匿名函数

当我们在传入函数时,有些时候,不需要显式地定义函数,直接传入匿名函数更方便。

在Python中,对匿名函数提供了有限支持。还是以map()函数为例,
计算f(x)=x2时,除了定义一个f(x)的函数外,还可以直接传入匿名函数:

>>> list(map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
[1, 4, 9, 16, 25, 36, 49, 64, 81]

通过对比可以看出,匿名函数lambda x: x * x实际上就是:

def f(x):
    return x * x

关键字lambda表示匿名函数,冒号前面的x表示函数参数。

匿名函数有个限制,就是只能有一个表达式,不用写return,返回值就是该表达式的结果。

用匿名函数有个好处,因为函数没有名字,不必担心函数名冲突。
此外,匿名函数也是一个函数对象,也可以把匿名函数赋值给一个变量,
再利用变量来调用该函数:

>>> f = lambda x: x * x
>>> f
<function <lambda> at 0x101c6ef28>
>>> f(5)
25

同样,也可以把匿名函数作为返回值返回,比如:

def build(x, y):
    return lambda: x * x + y * y

练习-匿名函数

请用匿名函数改造下面的代码:

# -*- coding: utf-8 -*-

def is_odd(n):
    return n % 2 == 1
L = list(filter(is_odd, range(1, 20)))
print(L)
# -*- coding: utf-8 -*-
L = list(filter(lambda n : n%2==1, range(1, 20)))
print(L)

小结-匿名函数

Python对匿名函数的支持有限,只有一些简单的情况下可以使用匿名函数。

装饰器

由于函数也是一个对象,而且函数对象可以被赋值给变量,
所以,通过变量也能调用该函数。

>>> def now():
...     print(‘2015-3-25‘)
...
>>> f = now
>>> f()
2015-3-25

函数对象有一个__name__属性,可以拿到函数的名字:

>>> now.__name__
‘now‘
>>> f.__name__
‘now‘

现在,假设我们要增强now()函数的功能,
比如,在函数调用前后自动打印日志,但又不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。

本质上,decorator就是一个返回 函数 的高阶函数。
所以,我们要定义一个能打印日志的decorator,可以定义如下:

def log(func):
    def wrapper(*args, **kw):
        print(‘call %s():‘ % func.__name__)
        return func(*args, **kw)
    return wrapper

观察上面的log,因为它是一个decorator,所以接受一个函数作为参数,
并返回一个函数。我们要借助Python的@语法,把decorator置于函数的定义处:

@log
def now():
    print(‘2015-3-25‘)

调用now()函数,不仅会运行now()函数本身,还会在运行now()函数前打印一行日志:

>>> now()
call now():
2015-3-25

@log放到now()函数的定义处,相当于执行了语句:

now = log(now)

由于log()是一个decorator,返回一个函数,
所以,原来的now()函数仍然存在,只是现在同名的now变量指向了新的函数,
于是调用now()将执行新函数,即在log()函数中返回的wrapper()函数。

wrapper()函数的参数定义是(*args, **kw),因此,wrapper()函数可以接受任意参数的调用。在wrapper()函数内,首先打印日志,再紧接着调用原始函数。

如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:

def log(text):
    def decorator(func):
        def wrapper(*args, **kw):
            print(‘%s %s():‘ % (text, func.__name__))
            return func(*args, **kw)
        return wrapper
    return decorator

这个3层嵌套的decorator用法如下:

@log(‘execute‘)
def now():
    print(‘2015-3-25‘)

执行结果如下:

>>> now()
execute now():
2015-3-25

和两层嵌套的decorator相比,3层嵌套的效果是这样的:

>>> now = log(‘execute‘)(now)

我们来剖析上面的语句,首先执行log(‘execute‘),返回的是decorator函数,
再调用返回的函数,参数是now函数,返回值最终是wrapper函数。

以上两种decorator的定义都没有问题,但还差最后一步。
因为我们讲了函数也是对象,它有__name__等属性,
但你去看经过decorator装饰之后的函数,它们的__name__已经从原来的‘now‘变成了‘wrapper‘

>>> now.__name__
‘wrapper‘

因为返回的那个wrapper()函数名字就是‘wrapper‘,所以,需要把原始函数的__name__等属性复制到wrapper()函数中,否则,有些依赖函数签名的代码执行就会出错。

不需要编写wrapper.__name__ = func.__name__这样的代码,Python内置的functools.wraps就是干这个事的,所以,一个完整的decorator的写法如下:

import functools

def log(func):
    @functools.wraps(func)
    def wrapper(*args, **kw):
        print(‘call %s():‘ % func.__name__)
        return func(*args, **kw)
    return wrapper

或者针对带参数的decorator

import functools

def log(text):
    def decorator(func):
        @functools.wraps(func)
        def wrapper(*args, **kw):
            print(‘%s %s():‘ % (text, func.__name__))
            return func(*args, **kw)
        return wrapper
    return decorator

import functools是导入functools模块。模块的概念稍候讲解。
现在,只需记住在定义wrapper()的前面加上@functools.wraps(func)即可。

练习-装饰器

请设计一个decorator,它可作用于任何函数上,并打印该函数的执行时间:

def metric(fn):
    print(‘%s executed in %s ms‘ % (fn.__name__, 10.24))
    return fn
# -*- coding: utf-8 -*-
import time, functools

def metric(fn):
    @functools.wraps(fn)
    def wrapper(*args, **kw):
        start_time = time.time() # 记录程序开始运行时间
        fn(*args, **kw)
        end_time = time.time()  # 记录程序结束运行时间
        print(‘%s executed in %s ms‘ % (fn.__name__,
        (end_time - start_time)))
        return fn(*args, **kw)
    return wrapper

# 测试
@metric
def fast(x, y):
    time.sleep(0.0012)
    return x + y;

@metric
def slow(x, y, z):
    time.sleep(0.1234)
    return x * y * z;

f = fast(11, 22)
s = slow(11, 22, 33)

if f != 33:
    print(‘测试失败!‘)
elif s != 7986:
    print(‘测试失败!‘)

小结-装饰器

在面向对象(OOP)的设计模式中,decorator被称为装饰模式。
OOP的装饰模式需要通过继承和组合来实现,而Python除了能支持OOP的decorator外,直接从语法层次支持decorator。
Python的decorator可以用函数实现,也可以用类实现。

decorator可以增强函数的功能,定义起来虽然有点复杂,但使用起来非常灵活和方便。

请编写一个decorator,能在函数调用的前后打印出‘begin call‘和‘end call‘的日志。

import functools

def log(func):
    @functools.wraps(func)
    def wrapper(*args, **kw):
        print(‘begin call %s():‘ % func.__name__)
        func(*args, **kw)
        print(‘end call %s():‘ % func.__name__)
        return None
    return wrapper

再思考一下能否写出一个@log的decorator,使它既支持:

@log
def f():
    pass

又支持:

@log(‘execute‘)
def f():
    pass

偏函数

Python的functools模块提供了很多有用的功能,其中一个就是偏函数(Partial function)。要注意,这里的偏函数和数学意义上的偏函数不一样。

在介绍函数参数的时候,我们讲到,通过设定参数的默认值,可以降低函数调用的难度。而偏函数也可以做到这一点。举例如下:

int()函数可以把字符串转换为整数,当仅传入字符串时,int()函数默认按十进制转换:

>>> int(‘12345‘)
12345

int()函数还提供额外的base参数,默认值为10。如果传入base参数,就可以做N进制的转换:

>>> int(‘12345‘, base=8)
5349
>>> int(‘12345‘, 16)
74565

假设要转换大量的二进制字符串,每次都传入int(x, base=2)非常麻烦,
于是,我们想到,可以定义一个int2()的函数,默认把base=2传进去:

def int2(x, base=2):
    return int(x, base)

这样,我们转换二进制就非常方便了:

>>> int2(‘1000000‘)
64
>>> int2(‘1010101‘)
85

functools.partial就是帮助我们创建一个偏函数的,
不需要我们自己定义int2(),可以直接使用下面的代码创建一个新的函数int2

>>> import functools
>>> int2 = functools.partial(int, base=2)
>>> int2(‘1000000‘)
64
>>> int2(‘1010101‘)
85

所以,简单总结functools.partial的作用就是,把一个函数的某些参数给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单。

注意到上面的新的int2函数,仅仅是把base参数重新设定默认值为2,但也可以在函数调用时传入其他值:

>>> int2(‘1000000‘, base=10)
1000000

最后,创建偏函数时,实际上可以接收函数对象*args**kw3个参数,当传入:

int2 = functools.partial(int, base=2)

实际上固定了int()函数的关键字参数base,也就是:

int2(‘10010‘)

相当于:

kw = { ‘base‘: 2 }
int(‘10010‘, **kw)

当传入:

max2 = functools.partial(max, 10)

实际上会把10作为*args的一部分自动加到左边,也就是:

max2(5, 6, 7)

相当于:

args = (10, 5, 6, 7)
max(*args)

结果为10

小结-偏函数

当函数的参数个数太多,需要简化时,使用functools.partial可以创建一个新的函数,这个新函数可以固定住原函数的部分参数,从而在调用时更简单。

模块

在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护。

为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就相对较少,很多编程语言都采用这种组织代码的方式。在Python中,一个.py文件就称之为一个模块(Module)。

使用模块有什么好处?

最大的好处是大大提高了代码的可维护性。其次,编写代码不必从零开始。当一个模块编写完毕,就可以被其他地方引用。我们在编写程序的时候,也经常引用其他模块,包括Python内置的模块和来自第三方的模块。

使用模块还可以避免函数名和变量名冲突。相同名字的函数和变量完全可以分别存在不同的模块中,因此,我们自己在编写模块时,不必考虑名字会与其他模块冲突。但是也要注意,尽量不要与内置函数名字冲突。点这里查看Python的所有内置函数。

你也许还想到,如果不同的人编写的模块名相同怎么办?为了避免模块名冲突,Python又引入了按目录来组织模块的方法,称为包(Package)。

举个例子,一个abc.py的文件就是一个名字叫abc的模块,一个xyz.py的文件就是一个名字叫xyz的模块。

现在,假设我们的abc和xyz这两个模块名字与其他模块冲突了,于是我们可以通过包来组织模块,避免冲突。方法是选择一个顶层包名,比如mycompany,按照如下目录存放:

mycompany
├─ __init__.py
├─ abc.py
└─ xyz.py

引入了包以后,只要顶层的包名不与别人冲突,那所有模块都不会与别人冲突。现在,abc.py模块的名字就变成了mycompany.abc,类似的,xyz.py的模块名变成了mycompany.xyz

请注意,每一个包目录下面都会有一个__init__.py的文件,这个文件是必须存在的,否则,Python就把这个目录当成普通目录,而不是一个包。__init__.py可以是空文件,也可以有Python代码,因为__init__.py本身就是一个模块,而它的模块名就是mycompany

类似的,可以有多级目录,组成多级层次的包结构。比如如下的目录结构:

mycompany
 ├─ web
 │  ├─ __init__.py
 │  ├─ utils.py
 │  └─ www.py
 ├─ __init__.py
 ├─ abc.py
 └─ utils.py

文件www.py的模块名就是mycompany.web.www,两个文件utils.py的模块名分别是mycompany.utilsmycompany.web.utils

自己创建模块时要注意命名,不能和Python自带的模块名称冲突。例如,系统自带了sys模块,自己的模块就不可命名为sys.py,否则将无法导入系统自带的sys模块。

mycompany.web也是一个模块,请指出该模块对应的.py文件。

总结

模块是一组Python代码的集合,可以使用其他模块,也可以被其他模块使用。

创建自己的模块时,要注意:

  • 模块名要遵循Python变量命名规范,不要使用中文、特殊字符;
  • 模块名不要和系统模块名冲突,最好先查看系统是否已存在该模块,检查方法是在Python交互环境执行import abc,若成功则说明系统存在此模块。

使用模块

Python本身就内置了很多非常有用的模块,只要安装完毕,这些模块就可以立刻使用。

我们以内建的sys模块为例,编写一个hello的模块:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

‘ a test module ‘

__author__ = ‘Michael Liao‘

import sys

def test():
    args = sys.argv
    if len(args)==1:
        print(‘Hello, world!‘)
    elif len(args)==2:
        print(‘Hello, %s!‘ % args[1])
    else:
        print(‘Too many arguments!‘)

if __name__==‘__main__‘:
    test()

第1行和第2行是标准注释,第1行注释可以让这个hello.py文件直接在Unix/Linux/Mac上运行,第2行注释表示.py文件本身使用标准UTF-8编码;

第4行是一个字符串,表示模块的文档注释,任何模块代码的第一个字符串都被视为模块的文档注释;
第6行使用__author__变量把作者写进去,这样当你公开源代码后别人就可以瞻仰你的大名;
以上就是Python模块的标准文件模板,当然也可以全部删掉不写,但是,按标准办事肯定没错。

后面开始就是真正的代码部分。

你可能注意到了,使用sys模块的第一步,就是导入该模块:
import sys

导入sys模块后,我们就有了变量sys指向该模块,利用sys这个变量,就可以访问sys模块的所有功能。

sys模块有一个argv变量,用list存储了命令行的所有参数。argv至少有一个元素,因为第一个参数永远是该.py文件的名称,例如:

运行python3 hello.py获得的sys.argv就是[‘hello.py‘]

运行python3 hello.py Michael获得的sys.argv就是[‘hello.py‘, ‘Michael]

最后,注意到这两行代码:

if __name__==‘__main__‘:
    test()

当我们在命令行运行hello模块文件时,Python解释器把一个特殊变量__name__置为__main__,而如果在其他地方导入该hello模块时,if判断将失败,因此,这种if测试可以让一个模块通过命令行运行时执行一些额外的代码,最常见的就是运行测试。

我们可以用命令行运行hello.py看看效果:

$ python3 hello.py
Hello, world!
$ python hello.py Michael
Hello, Michael!

如果启动Python交互环境,再导入hello模块:

$ python3
Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 23 2015, 02:52:03)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import hello
>>>

导入时,没有打印Hello, word!,因为没有执行test()函数。

调用hello.test()时,才能打印出Hello, word!:

>>> hello.test()
Hello, world!

作用域

在一个模块中,我们可能会定义很多函数和变量,但有的函数和变量我们希望给别人使用,有的函数和变量我们希望仅仅在模块内部使用。在Python中,是通过_前缀来实现的。

正常的函数和变量名是公开的(public),可以被直接引用,比如:abcx123PI等;

类似__xxx__这样的变量是特殊变量,可以被直接引用,但是有特殊用途,比如上面的__author____name__就是特殊变量,hello模块定义的文档注释也可以用特殊变量__doc__访问,我们自己的变量一般不要用这种变量名;

类似_xxx__xxx这样的函数或变量就是非公开的(private),不应该被直接引用,比如_abc__abc等;

之所以我们说,private函数和变量“不应该”被直接引用,而不是“不能”被直接引用,是因为Python并没有一种方法可以完全限制访问private函数或变量,但是,从编程习惯上不应该引用private函数或变量。

private函数或变量不应该被别人引用,那它们有什么用呢?请看例子:

def _private_1(name):
    return ‘Hello, %s‘ % name

def _private_2(name):
    return ‘Hi, %s‘ % name

def greeting(name):
    if len(name) > 3:
        return _private_1(name)
    else:
        return _private_2(name)

我们在模块里公开greeting()函数,而把内部逻辑用private函数隐藏起来了,这样,调用greeting()函数不用关心内部的private函数细节,这也是一种非常有用的代码封装和抽象的方法,即:

外部不需要引用的函数全部定义成private,只有外部需要引用的函数才定义为public。

安装第三方模块

在Python中,安装第三方模块,是通过包管理工具pip完成的。

如果你正在使用Mac或Linux,安装pip本身这个步骤就可以跳过了。

如果你正在使用Windows,请参考安装Python一节的内容,确保安装时勾选了pipAdd python.exe to Path

在命令提示符窗口下尝试运行pip,如果Windows提示未找到命令,可以重新运行安装程序添加pip。

注意:Mac或Linux上有可能并存Python 3.x和Python 2.x,因此对应的pip命令是pip3

例如,我们要安装一个第三方库——Python Imaging Library,这是Python下非常强大的处理图像的工具库。不过,PIL目前只支持到Python 2.7,并且有年头没有更新了,因此,基于PIL的Pillow项目开发非常活跃,并且支持最新的Python 3。

一般来说,第三方库都会在Python官方的pypi.python.org网站注册,要安装一个第三方库,必须先知道该库的名称,可以在官网或者pypi上搜索,比如Pillow的名称叫Pillow,因此,安装Pillow的命令就是:

pip install Pillow

耐心等待下载并安装后,就可以使用Pillow了。

安装常用模块

在使用Python时,我们经常需要用到很多第三方库,例如,上面提到的Pillow,以及MySQL驱动程序,Web框架Flask,科学计算Numpy等。用pip一个一个安装费时费力,还需要考虑兼容性。我们推荐直接使用Anaconda,这是一个基于Python的数据处理和科学计算平台,它已经内置了许多非常有用的第三方库,我们装上Anaconda,就相当于把数十个第三方模块自动安装好了,非常简单易用。

可以从Anaconda官网下载GUI安装包,安装包有500~600M,所以需要耐心等待下载。网速慢的同学请移步国内镜像。下载后直接安装,Anaconda会把系统Path中的python指向自己自带的Python,并且,Anaconda安装的第三方模块会安装在Anaconda自己的路径下,不影响系统已安装的Python目录。

安装好Anaconda后,重新打开命令行窗口,输入python,可以看到Anaconda的信息:

C:\> python
Python 3.6.3 |Anaconda, Inc.| ... on win32
Type "help", ... for more information.

可以尝试直接import numpy等已安装的第三方模块。
模块搜索路径

当我们试图加载一个模块时,Python会在指定的路径下搜索对应的.py文件,如果找不到,就会报错:

>>> import mymodule
...
ImportError: No module named mymodule

默认情况下,Python解释器会搜索当前目录、所有已安装的内置模块和第三方模块,搜索路径存放在sys模块的path变量中:

>>> import sys
>>> sys.path
[‘‘, ‘/Library/Frameworks/Python.framework/Versions/3.6/lib/python36.zip‘, ‘/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6‘, ..., ‘/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages‘]

如果我们要添加自己的搜索目录,有两种方法:

一是直接修改sys.path,添加要搜索的目录:

>>> import sys
>>> sys.path.append(‘/Users/michael/my_py_scripts‘)

这种方法是在运行时修改,运行结束后失效。

第二种方法是设置环境变量PYTHONPATH,该环境变量的内容会被自动添加到模块搜索路径中。设置方式与设置Path环境变量类似。注意只需要添加你自己的搜索路径,Python自己本身的搜索路径不受影响

python-2

原文:https://www.cnblogs.com/graviton/p/13401623.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!