首页 > 其他 > 详细

Kafka Streams开发入门(10)

时间:2020-08-04 18:36:36      阅读:96      评论:0      收藏:0      [点我收藏+]

1. 背景

上一篇介绍了Kafka Streams的时间窗口以及Tumbling Window的实例。这一篇我们利用Kafka Streams中的KTable概念来实时计算一组电影的平均分数。

2. 功能演示说明

这篇文章中我们会创建一个Kafka topic来表示电影打分事件,然后我们编写一个程序实时统计当前电影的平均分数。我们依然使用ProtocolBuffer对消息事件进行序列化。事件的JSON格式如下所示:

{"movie_id": 362, "rating": 9.6}
{"movie_id": 362, "rating": 9.7}
{"movie_id": 362, "rating": 8.6}

当Kafka Streams程序依次处理这3条事件时,它将依次产生以下输出:

> 9.6
> 9.65
> 9.3

3. 配置项目

第1步是创建项目功能所在路径,命令如下:

$ mkdir aggregating-average
$ cd aggregating-average

然后在新创建的aggregating-average路径下新建Gradle配置文件build.gradle,内容如下:

buildscript {
  repositories {
    jcenter()
  }
  dependencies {
    classpath "com.github.jengelman.gradle.plugins:shadow:4.0.2"
  }
}
plugins {
  id "java"
  id "com.google.protobuf" version "0.8.12"
}
apply plugin: ‘com.github.johnrengelman.shadow‘
sourceCompatibility = "1.8"
targetCompatibility = "1.8"
version = "0.0.1"
repositories {
  mavenCentral()
  jcenter()
  maven { url ‘https://packages.confluent.io/maven/‘ }
}
group ‘huxihx.kafkastreams‘
dependencies {
  implementation ‘com.google.protobuf:protobuf-java:3.12.4‘
  implementation ‘org.slf4j:slf4j-simple:1.7.30‘
  implementation ‘org.apache.kafka:kafka-streams:2.5.0‘
  implementation "com.typesafe:config:1.4.0"

  testCompile group: ‘junit‘, name: ‘junit‘, version: ‘4.13‘
}

protobuf {
  generatedFilesBaseDir = "$projectDir/src/"
  protoc {
    artifact = ‘com.google.protobuf:protoc:3.12.4‘
  }
}
jar {
  manifest {
    attributes(
        "Class-Path": configurations.runtime.collect { it.getName() }.join(" "),
        "Main-Class": ‘huxihx.kafkastreams.RunningAverage‘ 
    )
  }
}
shadowJar {
  archiveFileName = "aggregating-average-standalone-$version.$extension"
}  

我们指定app主类是huxihx.kafkastreams.RunningAverage。之后,保存上面的文件,然后执行下列命令下载Gradle的wrapper套件:

$ gradle wrapper

做完这些之后,我们在aggregating-average目录下创建名为configuration的子目录,用于保存我们的参数配置文件dev.properties:

$ mkdir configuration
$ cd configuration
$ vi dev.properties

dev.properties文件内容如下:  

application.id=kafka-films
request.timeout.ms=20000
bootstrap.servers=localhost:9092
retry.backoff.ms=500
default.topic.replication.factor=1
offset.reset.policy=latest
input.ratings.topic.name=ratings
input.ratings.topic.partitions=1
input.ratings.topic.replication.factor=1
output.rating-averages.topic.name=rating-averages
output.rating-averages.topic.partitions=1
output.rating-averages.topic.replication.factor=1

这里我们创建了一个输入topic:ratings和一个输出topic:rating-averages。前者表示电影打分事件,后者保存电影的平均分数。

4. 创建消息Schema

由于我们使用ProtocolBuffer进行序列化,因此我们要提前生成好Java类来建模实体消息。我们在aggregating-average路径下执行以下命令创建保存schema的文件夹:

$ mkdir -p src/main/proto
$ cd src/main/proto

之后在proto文件夹下创建名为rating.proto文件,内容如下:

syntax = "proto3";
   
package huxihx.kafkastreams.proto;
   
message Rating {
    int64 movie_id = 1;
    double rating = 2;
}

之后创建countsum.proto文件保存计算平均数所需的count和sum信息:

syntax = "proto3";
   
package huxihx.kafkastreams.proto;
   
message CountAndSum {
    int64 count = 1;
    double sum = 2;
}

保存上面的文件之后在aggregating-average目录下运行gradlew命令:

$ ./gradlew build

此时,你应该可以在aggregating-average的src/main/java/huxihx/kafkastreams/proto下看到生成的两个Java类:RatingOuterClass和Countsum。

5. 创建Serdes

这一步我们为所需的topic消息创建Serdes。首先在aggregating-average目录下执行下面的命令创建对应的文件夹目录:  

$ mkdir -p src/main/java/huxihx/kafkastreams/serdes

在新创建的serdes文件夹下创建ProtobufSerializer.java,内容如下:

package huxihx.kafkastreams.serdes;
    
import com.google.protobuf.MessageLite;
import org.apache.kafka.common.serialization.Serializer;
    
public class ProtobufSerializer<T extends MessageLite> implements Serializer<T> {
    @Override
    public byte[] serialize(String topic, T data) {
        return data == null ? new byte[0] : data.toByteArray();
    }
}

接下来是创建ProtobufDeserializer.java:

package huxihx.kafkastreams.serdes;
    
import com.google.protobuf.InvalidProtocolBufferException;
import com.google.protobuf.MessageLite;
import com.google.protobuf.Parser;
import org.apache.kafka.common.errors.SerializationException;
import org.apache.kafka.common.serialization.Deserializer;
    
import java.util.Map;
    
public class ProtobufDeserializer<T extends MessageLite> implements Deserializer<T> {
    
    private Parser<T> parser;
    
    @Override
    public void configure(Map<String, ?> configs, boolean isKey) {
        parser = (Parser<T>) configs.get("parser");
    }
    
    @Override
    public T deserialize(String topic, byte[] data) {
        try {
            return parser.parseFrom(data);
        } catch (InvalidProtocolBufferException e) {
            throw new SerializationException("Failed to deserialize from a protobuf byte array.", e);
        }
    }
}

最后是ProtobufSerdes.java:

package huxihx.kafkastreams.serdes;
    
import com.google.protobuf.MessageLite;
import com.google.protobuf.Parser;
import org.apache.kafka.common.serialization.Deserializer;
import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.common.serialization.Serializer;
    
import java.util.HashMap;
import java.util.Map;
    
public class ProtobufSerdes<T extends MessageLite> implements Serde<T> {
    
    private final Serializer<T> serializer;
    private final Deserializer<T> deserializer;
    
    public ProtobufSerdes(Parser<T> parser) {
        serializer = new ProtobufSerializer<>();
        deserializer = new ProtobufDeserializer<>();
        Map<String, Parser<T>> config = new HashMap<>();
        config.put("parser", parser);
        deserializer.configure(config, false);
    }
    
    @Override
    public Serializer<T> serializer() {
        return serializer;
    }
    
    @Override
    public Deserializer<T> deserializer() {
        return deserializer;
    }
}

6. 开发主流程

创建RunningAverage.java来执行平均分输的计算。注意代码中的getRatingAverageTable方法是如何计算平均分数的。

package huxihx.kafkastreams;

import com.typesafe.config.Config;
import com.typesafe.config.ConfigFactory;
import huxihx.kafkastreams.proto.Countsum;
import huxihx.kafkastreams.proto.RatingOuterClass;
import huxihx.kafkastreams.serdes.ProtobufSerdes;
import org.apache.kafka.clients.admin.AdminClient;
import org.apache.kafka.clients.admin.AdminClientConfig;
import org.apache.kafka.clients.admin.NewTopic;
import org.apache.kafka.clients.admin.TopicListing;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.Topology;
import org.apache.kafka.streams.kstream.Consumed;
import org.apache.kafka.streams.kstream.Grouped;
import org.apache.kafka.streams.kstream.KGroupedStream;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.KTable;
import org.apache.kafka.streams.kstream.Materialized;

import java.time.Duration;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.CountDownLatch;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class RunningAverage {

    private static ProtobufSerdes<RatingOuterClass.Rating> ratingSerdes() {
        return new ProtobufSerdes<>(RatingOuterClass.Rating.parser());
    }

    private static ProtobufSerdes<Countsum.CountAndSum> countAndSumSerdes() {
        return new ProtobufSerdes<>(Countsum.CountAndSum.parser());
    }

    public static void main(String[] args) throws Exception {
        new RunningAverage().runRecipe();
    }

    private Properties loadEnvProperties() {
        final Config load = ConfigFactory.load();
        final Map<String, Object> map = load.entrySet().stream()
                .filter(entry -> Stream.of("java", "user", "sun", "os", "http", "ftp", "file", "line", "awt", "gopher", "socks", "path")
                        .noneMatch(s -> entry.getKey().startsWith(s)))
                .peek(filteredEntry -> System.out.println(filteredEntry.getKey() + ": " + filteredEntry.getValue().unwrapped()))
                .collect(Collectors.toMap(Map.Entry::getKey, y -> y.getValue().unwrapped()));

        Properties props = new Properties();
        props.putAll(map);
        return props;
    }

    private void runRecipe() throws Exception {
        Properties envProps = this.loadEnvProperties();
        Properties streamProps = this.createStreamsProperties(envProps);
        Topology topology = this.buildTopology(new StreamsBuilder(), envProps);
        this.preCreateTopics(envProps);

        final KafkaStreams streams = new KafkaStreams(topology, streamProps);
        final CountDownLatch latch = new CountDownLatch(1);

        Runtime.getRuntime().addShutdownHook(new Thread("streams-shutdown-hook") {
            @Override
            public void run() {
                streams.close(Duration.ofSeconds(5));
                latch.countDown();
            }
        });

        try {
            streams.cleanUp();
            streams.start();
            latch.await();
        } catch (Throwable e) {
            System.exit(1);
        }
        System.exit(0);
    }

    private static KTable<Long, Double> getRatingAverageTable(KStream<Long, RatingOuterClass.Rating> ratings,
                                                              String avgRatingsTopicName,
                                                              ProtobufSerdes<Countsum.CountAndSum> countAndSumSerdes) {
        KGroupedStream<Long, Double> ratingsById = ratings
                .map((key, rating) -> new KeyValue<>(rating.getMovieId(), rating.getRating()))
                .groupByKey(Grouped.with(Serdes.Long(), Serdes.Double()));
        final KTable<Long, Countsum.CountAndSum> ratingCountAndSum =
                ratingsById.aggregate(() -> Countsum.CountAndSum.newBuilder().setCount(0L).setSum(0.0D).build(),
                        (key, value, aggregate) -> Countsum.CountAndSum.newBuilder().setCount(aggregate.getCount() + 1).setSum(aggregate.getSum() + value).build(),
                        Materialized.with(Serdes.Long(), countAndSumSerdes));
        final KTable<Long, Double> ratingAverage =
                ratingCountAndSum.mapValues(value -> value.getSum() / value.getCount(), Materialized.as("average-ratings"));
        ratingAverage.toStream().to(avgRatingsTopicName);
        return ratingAverage;
    }

    private Topology buildTopology(StreamsBuilder builder, Properties envProps) {
        final String ratingTopicName = envProps.getProperty("input.ratings.topic.name");
        final String avgRatingsTopicName = envProps.getProperty("output.rating-averages.topic.name");
        KStream<Long, RatingOuterClass.Rating> ratingStream = builder.stream(ratingTopicName,
                Consumed.with(Serdes.Long(), ratingSerdes()));
        getRatingAverageTable(ratingStream, avgRatingsTopicName, countAndSumSerdes());

        return builder.build();
    }


    private static void preCreateTopics(Properties envProps) throws Exception {
        Map<String, Object> config = new HashMap<>();
        config.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, envProps.getProperty("bootstrap.servers"));
        String inputTopic = envProps.getProperty("input.ratings.topic.name");
        String outputTopic = envProps.getProperty("output.rating-averages.topic.name");
        try (AdminClient client = AdminClient.create(config)) {
            Collection<TopicListing> existingTopics = client.listTopics().listings().get();

            List<NewTopic> topics = new ArrayList<>();
            List<String> topicNames = existingTopics.stream().map(TopicListing::name).collect(Collectors.toList());
            if (!topicNames.contains(inputTopic))
                topics.add(new NewTopic(
                        inputTopic,
                        Integer.parseInt(envProps.getProperty("input.ratings.topic.partitions")),
                        Short.parseShort(envProps.getProperty("input.ratings.topic.replication.factor"))));

            if (!topicNames.contains(outputTopic))
                topics.add(new NewTopic(
                        outputTopic,
                        Integer.parseInt(envProps.getProperty("output.rating-averages.topic.partitions")),
                        Short.parseShort(envProps.getProperty("output.rating-averages.topic.replication.factor"))));

            if (!topics.isEmpty())
                client.createTopics(topics).all().get();
        }
    }

    private Properties createStreamsProperties(Properties envProps) {
        Properties props = new Properties();
        props.putAll(envProps);

        props.put(StreamsConfig.APPLICATION_ID_CONFIG, envProps.getProperty("application.id"));
        props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, envProps.getProperty("bootstrap.servers"));
        props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.Long().getClass());
        props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.Double().getClass());
        props.put(StreamsConfig.CACHE_MAX_BYTES_BUFFERING_CONFIG, 0);

        props.put(StreamsConfig.REPLICATION_FACTOR_CONFIG, envProps.getProperty("default.topic.replication.factor"));
        props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, envProps.getProperty("offset.reset.policy"));

        return props;
    }
}

7. 编写测试Producer

现在创建src/main/java/huxihx/kafkastreams/tests/TestProducer.java,代码如下:  

package huxihx.kafkastreams.tests;

import huxihx.kafkastreams.proto.RatingOuterClass;
import huxihx.kafkastreams.serdes.ProtobufSerializer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.Properties;

public class TestProducer {

    public static void main(String[] args) {
        Properties props = new Properties();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
        props.put(ProducerConfig.ACKS_CONFIG, "all");
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, new ProtobufSerializer<RatingOuterClass.Rating>().getClass());

        try (final Producer<String, RatingOuterClass.Rating> producer = new KafkaProducer<>(props)) {
            ProducerRecord<String, RatingOuterClass.Rating> event =
                    new ProducerRecord<>("ratings", RatingOuterClass.Rating.newBuilder().setMovieId(362).setRating(Double.valueOf(args[0])).build());
            producer.send(event, ((metadata, exception) -> {
                if (exception != null) {
                    exception.printStackTrace();
                }
            }));
        }
    }
} 

这个测试Producer通过命令行参数的方式指定电影的分数。

8. 测试

首先我们运行下列命令构建项目:

$ ./gradlew shadowJar

然后启动Kafka集群,之后运行Kafka Streams应用:

$ java -Dconfig.file=configuration/dev.properties -jar build/libs/aggregating-average-standalone-0.0.1.jar

现在启动一个终端打开console consumer:

$ bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --from-beginning --group test-group --topic rating-averages --value-deserializer org.apache.kafka.common.serialization.DoubleDeserializer  

由于平均分数使用Double类型表示,因此console consumer必须指定消息体的deserializer为DoubleDeserializer。

之后在aggregating-average路径下打开终端,多次运行TestProducer生成电影分数:

$ java -cp build/libs/aggregating-average-standalone-0.0.1.jar huxihx.kafkastreams.tests.TestProducer 9.6
$ java -cp build/libs/aggregating-average-standalone-0.0.1.jar huxihx.kafkastreams.tests.TestProducer 9.7
$ java -cp build/libs/aggregating-average-standalone-0.0.1.jar huxihx.kafkastreams.tests.TestProducer 8.6

此时,回到console consumer的终端,你应该可以看到下面的输出:

9.6
9.65
9.3  

这表明,Kafka Streams app能够正确地实时计算电影的平均分数。 

Kafka Streams开发入门(10)

原文:https://www.cnblogs.com/huxi2b/p/13434600.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!