Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn‘t one, return 0 instead.
Example:
Input: s = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: the subarray [4,3] has the minimal length under the problem constraint.
Follow up:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
class Solution {
public int minSubArrayLen(int s, int[] nums) {
// [l,r]
int l = 0;
int r = -1;
int sum = 0;
int res = nums.length + 1;
while(l<nums.length){
if(r+1<nums.length && sum < s){
sum += nums[++r];
}else{
sum -= nums[l++];
}
// 每次改变做一些判断
if (sum >= s){
res = Math.min(res, r - l + 1);
}
}
return res == nums.length+1 ? 0 : res;
}
}
主要思路:利用二分法查找符合条件的框最小尺寸
相当于在\([l,r]\)中查找size位置,满足条件,最后得到的\(size+1\)才是真正的尺寸
class Solution {
public int minSubArrayLen(int s, int[] nums) {
// sum[i] ==> nums[0]+..+nums[i-1]
int[] sum = new int[nums.length+1];
sum[0] = 0;
int res = nums.length + 1;
for(int i=1;i<=nums.length;i++){
sum[i] = sum[i-1] + nums[i-1];
}
// sum[r] - sum[l] = nums[l] +..+ nums[r-1]
for(int l=0;l<nums.length;l++){
int r = findLowerBound(sum,sum[l]+s);
if(r != sum.length){
res = Math.min(res,r-1-l+1);
}
}
return res == nums.length+1 ? 0 : res;
}
private int findLowerBound(int[] sum, int aim){
// [l,r) find aim
int r = sum.length;
int l = 0;
while (l != r){
int mid = l + (r - l) / 2;
if (sum[mid] >= aim){
r = mid;
}else{
l = mid+1;
}
}
return r;
}
}
class Solution {
public int minSubArrayLen(int s, int[] nums) {
// sum[i] ==> nums[0]+..+nums[i-1]
int[] sum = new int[nums.length+1];
sum[0] = 0;
int res = nums.length + 1;
for(int i=1;i<=nums.length;i++){
sum[i] = sum[i-1] + nums[i-1];
}
// sum[r] - sum[l] = nums[l] +..+ nums[r-1]
for(int l=0;l<nums.length;l++){
int r = findLowerBound(sum,sum[l]+s,l+1);
if(r != sum.length){
res = Math.min(res,r-1-l+1);
}
}
return res == nums.length+1 ? 0 : res;
}
private int findLowerBound(int[] sum, int aim,int l){
// [l,r) find aim
int r = sum.length;
while (l != r){
int mid = l + (r - l) / 2;
if (sum[mid] >= aim){
r = mid;
}else{
l = mid+1;
}
}
return r;
}
}
Leetcode.209 | Minimum Size Subarray Sum( Java)
原文:https://www.cnblogs.com/xm08030623/p/13462368.html