题意:给定一个序列,包含n个元素,每个元素都是[1, n]中唯一的元素。求是否存在一个序列满足,对于任意的(1 <= i <= j <= n),[i, j]中的每个数异或起来大于j - i + 1,即这个区间的长度。
分析:一个事实:\(p_{i}orp_{i+1}orp_{i+2}\dots>=max(p_{i},p_{i+1},\dots)\)。那么我们只要证明对于任意长度len的子序列,存在一个元素>=len即可,根据鸽巢原理,如果存在一个长度为len的区间,里面的元素为[1, len - 1],那么就会违反这是个序列每个数都只存在一次的性质,因此,对于任意一个长度为len的子序列,都会存在一个大于等于len的元素。所以,只要输出任意一个序列即可。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
int main()
{
int t;
cin >> t;
while (t--)
{
int n;
cin >> n;
for (int i = 1; i <= n; ++i)
cout << i << " ";
cout << endl;
}
return 0;
}
原文:https://www.cnblogs.com/pixel-Teee/p/13467703.html