首页 > 其他 > 详细

线性变换的矩阵表示

时间:2020-08-10 23:51:11      阅读:125      评论:0      收藏:0      [点我收藏+]

千里之行始于足下,重视基础才是本质。 在矩阵论中提到的线性变换是一个相对抽象的概念,先给出相关定义

定义: 设V是数域K上的线性空间,T是V到自身的一个映射,使对任意向量$x\in V$,V中都有唯一的向量y与之对应,则称T是V的一个变换或者算子,记$Tx=y$,称y为x在T下的,而x是y的原象(象源)

这个T类似于数学分析中的函数$y=f(x)$,不过那里是数量函数,这里是向量函数。如果变换T满足一定的线性变换要求$T(kx+ly)=kT(x)+lk(y)$,则T为V的一个线性变换。 概念类比到数量函数,线性变换T的也是很好理解的。但是在具体计算过程中,我们怎么把抽象的概念具体化?这就涉及到线性变换的矩阵表示。从定义入手的话,如果需要确定线性变换T,则需要找到V中所有向量在T下的象。事实上不需要这么麻烦的。V中所有向量都可以由V的基向量组$(x_1,x_2,……,x_n)$线性表示,加上T是V的线性变换,则V中所有象都可以由基象组(Tx_1,Tx_2,……,Tx_n)线性表示。

设T是线性空间$Vn$的线性变换,\(x\in V^n\),且$x_1, x_2, ……,x_n$是$Vn$的一个基,则 \(x=a_1x_1+a_2x_2+……+a_nx_n\) \(Tx=a_1(Tx_1)+a_2(Tx_2)+……+a_nT(x_n)\)

\[ \begin{cases} Tx_1=a_{11}x_1+a_{21}x_2+……+a_{n1}x_n \Tx_2=a_{12}x_1+a_{22}x_2+……+a_{n2}x_n \ ……\Tx_n=a_{1n}x_1+a_{2n}x_2+……+a+{nn}x_n \end{cases}$$ 在处理具体问题时,采用矩阵乘法的形式表示上述公式组: $T(x_1,x_2,……,x_n)=(Tx_1,Tx_2,……,Tx_n)=(x_1,x_2,……,x_n)A$ 这个A称为线性变换T在$V^n$的基$x_1,x_2,……,x_n$下的矩阵,简称**A为T的矩阵**。 在处理题目时这一点经常牵扯到逆矩阵运算,也就是$A=(x_1,x_2,……,x_n)^{-1}(Tx_1,Tx_2,……,Tx_n)$($Tx_i$是对第i个基向量施加线性变换,这个线性变换会提前给出,注意运算正确性) 相同的线性变换T,在一个基向量组$(x_1,x_2,……,x_n)$下有一个矩阵A,在另一个基向量组$(y_1,y_2,……,y_n)$下可能就有另一个矩阵B。问题如下: \]

\begin T(x_1,x_2,……,x_n)=(x_1,x_2,……,x_n)A T(y_1,y_2,……,y_n)=(y_1,y_2,……,y_n)B \end$$ 解决思路无外乎两种:1、分别计算,简单粗暴;2、如果容易得到矩阵A,则可以通过基向量组之间的联系建立起A和B的关系。比如已知矩阵A和$(y_1,y_2,……,y_n)=(x_1,x_2,……,x_n)C$,则$T(y_1,y_2,……,y_n)=T(x_1,x_2,……,x_n)C=(x_1,x_2,……,x_n)AC=(y_1,y_2,……,y_n)B=(x_1,x_2,……,x_n)CB$,也就是$B=C^{-1}AC$。

线性变换的矩阵表示

原文:https://www.cnblogs.com/LiYimingRoom/p/13472913.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!