下面是自己学习设计模式的时候做的总结,有些是自己的原创文章,有些是网上写的比较好的文章,保存下来细细消化吧!
系列文章推荐:https://design-patterns.readthedocs.io/zh_CN/latest/index.html
public class Singleton { //在静态初始化器中创建单例实例,这段代码保证了线程安全 private static Singleton uniqueInstance = new Singleton(); //Singleton类只有一个构造方法并且是被private修饰的,所以用户无法通过new方法创建该对象实例 private Singleton(){} public static Singleton getInstance(){ return uniqueInstance; } }
所谓 “饿汉方式” 就是说JVM在加载这个类时就马上创建此唯一的单例实例,不管你用不用,先创建了再说,如果一直没有被使用,便浪费了空间,典型的空间换时间,每次调用的时候,就不需要再判断,节省了运行时间。
public class Singleton { private static Singleton uniqueInstance; private Singleton (){ } //没有加入synchronized关键字的版本是线程不安全的 public static Singleton getInstance() { //判断当前单例是否已经存在,若存在则返回,不存在则再建立单例 if (uniqueInstance == null) { uniqueInstance = new Singleton(); } return uniqueInstance; } }
所谓 “ 懒汉式” 就是说单例实例在第一次被使用时构建,而不是在JVM在加载这个类时就马上创建此唯一的单例实例。
但是上面这种方式很明显是线程不安全的,如果多个线程同时访问getInstance()方法时就会出现问题。如果想要保证线程安全,一种比较常见的方式就是在getInstance() 方法前加上synchronized关键字,如下:
public static synchronized Singleton getInstance() { if (instance == null) { uniqueInstance = new Singleton(); } return uniqueInstance; }
我们知道synchronized关键字偏重量级锁。虽然在JavaSE1.6之后synchronized关键字进行了主要包括:为了减少获得锁和释放锁带来的性能消耗而引入的偏向锁和轻量级锁以及其它各种优化之后执行效率有了显著提升。
但是在程序中每次使用getInstance() 都要经过synchronized加锁这一层,这难免会增加getInstance()的方法的时间消费,而且还可能会发生阻塞。我们下面介绍到的 双重检查加锁版本 就是为了解决这个问题而存在的。
利用双重检查加锁(double-checked locking),首先检查是否实例已经创建,如果尚未创建,“才”进行同步。这样以来,只有一次同步,这正是我们想要的效果。
public class Singleton { //volatile保证,当uniqueInstance变量被初始化成Singleton实例时,多个线程可以正确处理uniqueInstance变量 private volatile static Singleton uniqueInstance; private Singleton() { } public static Singleton getInstance() { //检查实例,如果不存在,就进入同步代码块 if (uniqueInstance == null) { //只有第一次才彻底执行这里的代码 synchronized(Singleton.class) { //进入同步代码块后,再检查一次,如果仍是null,才创建实例 if (uniqueInstance == null) { uniqueInstance = new Singleton(); } } } return uniqueInstance; } }
很明显,这种方式相比于使用synchronized关键字的方法,可以大大减少getInstance() 的时间消费。
静态内部实现的单例是懒加载的且线程安全。
只有通过显式调用 getInstance 方法时,才会显式装载 SingletonHolder 类,从而实例化 instance(只有第一次使用这个单例的实例的时候才加载,同时不会有线程安全问题)。
public class Singleton { private static class SingletonHolder { private static final Singleton INSTANCE = new Singleton(); } private Singleton (){} public static final Singleton getInstance() { return SingletonHolder.INSTANCE; } }
这种实现方式还没有被广泛采用,但这是实现单例模式的最佳方法。 它更简洁,自动支持序列化机制,绝对防止多次实例化 (如果单例类实现了Serializable接口,默认情况下每次反序列化总会创建一个新的实例对象,关于单例与序列化的问题可以查看这一篇文章《单例与序列化的那些事儿》),同时这种方式也是《Effective Java 》以及《Java与模式》的作者推荐的方式。
public enum Singleton { //定义一个枚举的元素,它就是 Singleton 的一个实例 INSTANCE; public void doSomeThing() { System.out.println("枚举方法实现单例"); } }
使用方法:
public class ESTest { public static void main(String[] args) { Singleton singleton = Singleton.INSTANCE; singleton.doSomeThing();//output:枚举方法实现单例 } }
《Effective Java 中文版 第二版》
这种方法在功能上与公有域方法相近,但是它更加简洁,无偿提供了序列化机制,绝对防止多次实例化,即使是在面对复杂序列化或者反射攻击的时候。虽然这种方法还没有广泛采用,但是单元素的枚举类型已经成为实现Singleton的最佳方法。 —-《Effective Java 中文版 第二版》
《Java与模式》
《Java与模式》中,作者这样写道,使用枚举来实现单实例控制会更加简洁,而且无偿地提供了序列化机制,并由JVM从根本上提供保障,绝对防止多次实例化,是更简洁、高效、安全的实现单例的方式。
我们主要介绍到了以下几种方式实现单例模式:
先来看一下GOF为工厂模式的定义:
“Define an interface for creating an object, but let subclasses decide which class to instantiate. Factory Method lets a class defer instantiation to subclasses.”(在基类中定义创建对象的一个接口,让子类决定实例化哪个类。工厂方法让一个类的实例化延迟到子类中进行。)
(1)简单工厂(Simple Factory)模式,又称静态工厂方法模式(Static Factory Method Pattern)。
(2)工厂方法(Factory Method)模式,又称多态性工厂(Polymorphic Factory)模式或虚拟构造子(Virtual Constructor)模式;
(3)抽象工厂(Abstract Factory)模式,又称工具箱(Kit 或Toolkit)模式。
原文:https://www.cnblogs.com/xiaomaoyvtou/p/13491629.html