首页 > 其他 > 详细

1283. Find the Smallest Divisor Given a Threshold

时间:2020-08-13 15:20:22      阅读:68      评论:0      收藏:0      [点我收藏+]

问题:

给定一个数组,求一个除数,

使得数组中每个元素被该数除后(有余数则结果+1)的和,不超过threshold。

(For example: 7/3 = 3 and 10/2 = 5).

Example 1:
Input: nums = [1,2,5,9], threshold = 6
Output: 5
Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. 
If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). 

Example 2:
Input: nums = [2,3,5,7,11], threshold = 11
Output: 3

Example 3:
Input: nums = [19], threshold = 5
Output: 4

Constraints:
1 <= nums.length <= 5 * 10^4
1 <= nums[i] <= 10^6
nums.length <= threshold <= 10^6

  

解法:二分查找(Binary Search)

最小值l:1

最大值r:max(nums)(由于nums.length <= threshold)

找到一个最小的m,使得 sum(n1/m, n2/m...nn/m) <= threshold

?? 注意:这里除方法的规则为:

  • 若整除,则返回整除结果
  • 若有余数,则返回整除结果+1

可转换为:

  • sum+=((nums[i]+m-1)/m)

给原数+(除数-1)后,再去做除法计算。

 

代码参考:

 1 class Solution {
 2 public:
 3     int smallestDivisor(vector<int>& nums, int threshold) {
 4         int l = 1, r = INT_MIN;
 5         for(int n:nums) r=max(r, n);
 6         while(l<r) {
 7             int m = l+(r-l)/2;
 8             int sum = 0;
 9             for(int n:nums) {
10                 sum+=((n+m-1)/m);
11             }
12             if(sum<=threshold) {
13                 r = m;
14             } else {
15                 l = m+1;
16             }
17         }
18         return l;
19     }
20 };

 

1283. Find the Smallest Divisor Given a Threshold

原文:https://www.cnblogs.com/habibah-chang/p/13496276.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!