1.需求
将统计结果按照手机归属地不同省份输出到不同文件中(分区)期望输出数据手机号136、137、138、139开头都分别放到一个独立的4个文件中,其他开头的放到一个文件中。
代码如下:
package partiton; import flow.FlowBean; import flow.FlowMapper; import flow.FlowReducer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.Job; import java.io.IOException; public class partitonDriver { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { //1、获取job实例 Job job=Job.getInstance(new Configuration()); //2、设置类路径 job.setJarByClass(partitonDriver.class); //3、设置Mapper和Reducer job.setMapperClass(FlowMapper.class); job.setReducerClass(FlowReducer.class); job.setNumReduceTasks(5); job.setPartitionerClass(MyPartitioner.class); //4、设置输入输入输出类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(FlowBean.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(FlowBean.class); //5、设置输入输出路径 FileInputFormat.setInputPaths(job,new Path(args[0])); FileOutputFormat.setOutputPath(job,new Path(args[1])); //6、进行提交 boolean b=job.waitForCompletion(true); System.exit(b ? 0:1); } }
package partiton; import flow.FlowBean; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Partitioner; public class MyPartitioner extends Partitioner<Text, FlowBean> { //返回分区号 public int getPartition(Text text, FlowBean flowBean, int i) { String phone=text.toString(); switch (phone.substring(0,3)){ case "136": return 0; case "137": return 1; case "138": return 2; case "139": return 3; default: return 4; } } }
成功运行之后
并存储为了文件。显然已经了分区操作
排序是MapReduce框架中最重要的操作之一。MapTask和ReduceTask均会对数据按照key进行排序。该操作属于Hadoop的默认行为。任何应用程序中的数据均会被排序,而不管逻辑上是否需要。默认排序是按照字典顺序排序,且实现该排序的方法是快速排序。
(1)部分排序
MapReduce根据输入记录的键对数据集排序。保证输出的每个文件内部有序。
(2)全排序
最终输出结果只有一个文件,且文件内部有序。实现方式是只设置一个Reduce Task。但该方法在
处理大型文件时效率极低,因为一台机器处理所有文件,完全丧失了MapReduce所提供的并行架构。
(3)辅助排序: (GroupingCompan tor分组)
在Redre端对key进行分组。应用于:在接收的ke y为bean对象时,想让-个或几个字段相同(全部
字段比较不相同)的hkey进入 到同-个reduce方法时,可以采用分组排序。
(4)二次排序.
在自定义排序过程中,如果compare To中的判断条件为两个即为二次排序。
package writablecomparable; import org.apache.hadoop.io.Writable; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; public class FlowBean implements Writable ,Comparable<FlowBean>{ private long upFlow; private long downFlow; private long sumFlow; //准备一个空参构造器 public FlowBean() {} public void set(long upFlow,long downFlow) { this.downFlow=downFlow; this.upFlow=upFlow; this.sumFlow=upFlow+downFlow; } @Override public String toString() { return upFlow+"\t"+downFlow+"\t"+sumFlow; } public long getUpFlow() { return upFlow; } public void setUpFlow(long upFlow) { this.upFlow = upFlow; } public long getDownFlow() { return downFlow; } public void setDownFlow(long downFlow) { this.downFlow = downFlow; } public long getSumFlow() { return sumFlow; } public void setSumFlow(long sumFlow) { this.sumFlow = sumFlow; } //序列化方法 //提供数据的出口 public void write(DataOutput dataOutput) throws IOException { dataOutput.writeLong(upFlow); dataOutput.writeLong(downFlow); dataOutput.writeLong(sumFlow); } //反序列化方法 //框架提供的数据来源 public void readFields(DataInput dataInput) throws IOException { upFlow=dataInput.readLong(); downFlow=dataInput.readLong(); sumFlow=dataInput.readLong(); } @Override public int compareTo(FlowBean o) { return Long.compare(o.sumFlow,this.sumFlow); } //这两个方法里面的内容顺序要一样uds, }
package writablecomparable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class SortReducer extends Reducer<FlowBean, Text,Text,FlowBean> { @Override protected void reduce(FlowBean key, Iterable<Text> values, Context context) throws IOException, InterruptedException { for(Text value:values) { context.write(value,key); } } }
package writablecomparable; import com.sun.tools.javac.comp.Flow; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class SortDriver { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Job job =Job.getInstance(new Configuration()); job.setJarByClass(SortDriver.class); job.setMapperClass(SortMapper.class); job.setReducerClass(SortReducer.class); job.setMapOutputKeyClass(FlowBean.class); job.setMapOutputValueClass(Text.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(FlowBean.class); FileInputFormat.setInputPaths(job,new Path("D:\\wev")); FileOutputFormat.setOutputPath(job,new Path("D:\\wev")); boolean b=job.waitForCompletion(true); System.exit(b?0:1); } }
package writablecomparable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; public class SortMapper extends Mapper<LongWritable,Text,FlowBean, Text> { private FlowBean flow=new FlowBean(); private Text phone =new Text(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] fieds=value.toString().split("\t"); phone.set(fieds[0]); flow.setUpFlow(Long.parseLong(fieds[1])); flow.setDownFlow(Long.parseLong(fieds[2])); flow.setSumFlow(Long.parseLong(fieds[3])); context.write(flow,phone); } }
运行结果显示已经按照流量排序而完成:
原文:https://www.cnblogs.com/dazhi151/p/13526120.html