求 \(\sum_{i=1}^ni^k\)
定义 \(B_0=1\)
且有 \(\sum_{i=0}^k(C_{k+1}^iB_k)=0\)
伯努利数的递推式
\[B_i=-\frac{1}{C_{k+1}^i}\sum_{j=0}^{i-1}(C_{k+1}^jB_j)
\]
求和公式
\[\sum_{i=1}^ni^k=\frac{1}{k+1}\sum_{j=1}^{k+1}(C_{k+1}^{j}B_{k+1-j}(n+1)^i)
\]
等次幂求和(伯努利数)
原文:https://www.cnblogs.com/Acestar/p/13550230.html