首页 > 其他 > 详细

卷积网络实现cifar数据集分类

时间:2020-08-24 22:36:44      阅读:114      评论:0      收藏:0      [点我收藏+]
import tensorflow as tf
import os
import numpy as np
from matplotlib import  pyplot as plt
from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPool2D,Dropout,Flatten,Dense
from tensorflow.keras import Model
np.set_printoptions(threshold=np.inf)

cifar10=tf.keras.datasets.cifar10
(x_train,y_train),(x_test,y_test)=cifar10.load_data()
x_train=x_train/255.
x_test=x_test/255.

class Baseline(Model):
    def __init__(self):
        super(Baseline,self).__init__()
        self.c1=Conv2D(filters=6,kernel_size=(5,5),padding=same)   #6个5*5卷积核
        self.b1=BatchNormalization()                                 #批标准化
        self.a1=Activation(relu)
        self.p1=MaxPool2D(pool_size=(2,2),strides=2,padding=same)  #最大值池化
        self.d1=Dropout(0.2)                                         #舍弃

        self.flatter=Flatten()                                      #数据拉直
        self.f1=Dense(128,activation=relu)
        self.d2=Dropout(0.2)
        self.f2=Dense(10,activation=softmax)

    def call(self,x):
        x = self.c1(x)
        x = self.b1(x)
        x = self.a1(x)
        x = self.p1(x)
        x = self.d1(x)
        x = self.flatter(x)
        x = self.d2(x)
        y = self.f2(x)
        return y

model=Baseline()
model.compile(optimizer=adam,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=[sparse_categorical_accuracy])

checkpoint_save_path=./checkpoint/Baseline.ckpt

if os.path.exists(checkpoint_save_path+.index):
    print(-------load the model-------)
    model.load_weights(checkpoint_save_path)

cp_callback=tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                               save_weights_only=True,
                                               save_best_only=True)

history=model.fit(x_train,y_train,batch_size=32,epochs=5,validation_data=(x_test,y_test),validation_freq=1,
                  callbacks=[cp_callback])

model.summary()

file=open(./weights.txt,w)
for v in model.trainable_variables:
    file.write(str(v.name)+\n)
    file.write(str(v.shape) + \n)
    file.write(str(v.numpy()) + \n)

file.close()

##########show###########
acc=history.history[sparse_categorical_accuracy]
val_acc=history.history[val_sparse_categorical_accuracy]
loss=history.history[loss]
val_loss=history.history[val_loss]

plt.subplot(1,2,1)
plt.plot(acc,label=Training Accuracy)
plt.plot(val_acc,label=Validation Accuracy)
plt.title(Training and Validation Accuracy)
plt.legend()

plt.subplot(1,2,2)
plt.plot(loss,label=Training Loss)
plt.plot(val_loss,label=Validation Loss)
plt.title(Training and Validation Loss)
plt.legend()
plt.show()

 

卷积网络实现cifar数据集分类

原文:https://www.cnblogs.com/python2/p/13556786.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!