#pragma once class CAVLTree { private: struct TreeNode { TreeNode(const int& nVal) :m_nVal(nVal) {} int m_nVal = 0; //数据 int m_hHeight = 1; //叶子结点的高度 TreeNode* m_pParent = nullptr; //父亲 TreeNode* m_pLeft = nullptr; //左孩子 TreeNode* m_pRight = nullptr; //右孩子 }; public: CAVLTree(); ~CAVLTree(); void Insert(const int& nVal); //插入 //遍历 void Layer(); //层序遍历 void LDR(); //中序遍历 void LDR_Loop(); //中序遍历 void _LDR(TreeNode* pNode); //中序遍历 void DLR(); //前序遍历 void DLR_Loop(); //前序遍历 void LRD(); //后序遍历 void LRD_Loop(); //后序遍历 public: void Delete(const int& nVal); private: TreeNode* Find(const int& nVal); void DeleteNode(TreeNode* pNodeDel); private: void AdjustHeight(TreeNode* pNode); int GetHeight(TreeNode* pNode); void RotateRight(TreeNode* pNode); void RotateLeft(TreeNode* pNode); TreeNode* m_pRoot = nullptr; //根结点 };
#include "stdafx.h" #include "AVLTree.h" #include <queue> #include <iostream> #include <stack> using namespace std; CAVLTree::CAVLTree() { } CAVLTree::~CAVLTree() { } void CAVLTree::Insert(const int& nVal) { //创建新结点 TreeNode* pNewNode = new TreeNode(nVal); //空树 if (m_pRoot == nullptr) { m_pRoot = pNewNode; return; } //插入新数据 TreeNode* pNode = m_pRoot; do { //如果值比结点的值小,则取结点的左孩子 if (nVal < pNode->m_nVal) { //左孩子不存在,则新结点插入 if (pNode->m_pLeft == nullptr) { pNode->m_pLeft = pNewNode; pNewNode->m_pParent = pNode; break; } //左孩子存在,继续比较 else { pNode = pNode->m_pLeft; } } //如果值比结点的值大,则取结点的右孩子 else if (nVal > pNode->m_nVal) { //如果右孩子不存在,则新结点插入 if (pNode->m_pRight == nullptr) { pNode->m_pRight = pNewNode; pNewNode->m_pParent = pNode; break; } //继续比较 else { pNode = pNode->m_pRight; } } //如果相等,则不插入. else { return; } } while (true); AdjustHeight(pNewNode); } /* 层序遍历: 一层一层遍历树 8 4 15 2 5 10 19 输出结果: 8 4 15 2 5 10 19 */ void CAVLTree::Layer() { queue<TreeNode*> queNodes; queNodes.push(m_pRoot); while (!queNodes.empty()) { //取队首的元素, TreeNode* pNode = queNodes.front(); if (pNode == nullptr) { queNodes.pop(); continue; } //左孩子和右孩子入队 queNodes.push(pNode->m_pLeft); queNodes.push(pNode->m_pRight); //输出 cout << pNode->m_nVal << " "; //结点出队 queNodes.pop(); } cout << endl; } /* 中序遍历:先左孩子,再自己,再右孩子 8 4 15 2 5 10 19 输出结果: 2 4 5 8 10 15 19 */ void CAVLTree::LDR() { _LDR(m_pRoot); cout << endl; } /* 中序遍历:先左孩子,再自己,再右孩子 8 4 15 2 5 10 19 输出结果: 2 4 5 8 10 15 19 栈:(底 --> 顶) 输出: 8 8 4 8 4 2 8 4 2 8 5 2 4 8 2 4 5 15 2 4 5 8 15 10 2 4 5 8 15 2 4 5 8 10 19 2 4 5 8 10 15 2 4 5 8 10 15 19 */ void CAVLTree::LDR_Loop() { stack<TreeNode*> stkTmp; TreeNode* pNode = m_pRoot; while (true) { //结点入栈 while (pNode != nullptr) { stkTmp.push(pNode); pNode = pNode->m_pLeft; } //栈为空,结束 if (stkTmp.empty()) { break; } //从栈顶取出元素,处理自己 pNode = stkTmp.top(); cout << pNode->m_nVal << " "; pNode = pNode->m_pRight; stkTmp.pop(); } cout << endl; } void CAVLTree::_LDR(TreeNode* pNode) { if (pNode == nullptr) { return; } _LDR(pNode->m_pLeft); cout << pNode->m_nVal << " "; _LDR(pNode->m_pRight); } /* 前序遍历:先自己,再左孩子,再右孩子 输出自己,右孩子入栈,处理左孩子 */ void CAVLTree::DLR_Loop() { stack<TreeNode*> stkTmp; TreeNode* pNode = m_pRoot; while (true) { //先处理自己 while (pNode != nullptr) { cout << pNode->m_nVal << " "; stkTmp.push(pNode->m_pRight); pNode = pNode->m_pLeft; } //栈为空,处理完毕 if (stkTmp.empty()) { break; } //处理右孩子 pNode = stkTmp.top(); stkTmp.pop(); } cout << endl; } /* 后序遍历:先左孩子,再右孩子,再自己 自己入栈, 处理左孩子,再右孩子入栈,再处理自己 */ void CAVLTree::LRD_Loop() { stack<TreeNode*> stkTmp; TreeNode* pNode = m_pRoot; TreeNode* pLastNode = nullptr; while (true) { while (pNode != nullptr) { stkTmp.push(pNode); pNode = pNode->m_pLeft; } //栈空则处理完毕 if (stkTmp.empty()) { break; } pNode = stkTmp.top(); if (pNode->m_pRight == nullptr//叶子节点 || pNode->m_pRight == pLastNode //上一次处理了此节点的右孩子 ) { cout << pNode->m_nVal << " "; pLastNode = pNode; pNode = nullptr; stkTmp.pop(); } else //上一次没有处理此节点的右孩子,所以此节点不处理,处理其右孩子 { pNode = pNode->m_pRight; } } cout << endl; } CAVLTree::TreeNode* CAVLTree::Find(const int& nVal) { TreeNode* pNode = m_pRoot; while (true) { if (pNode == nullptr) { return nullptr; } if (nVal == pNode->m_nVal) { return pNode; } else if (nVal > pNode->m_nVal) { pNode = pNode->m_pRight; } else { pNode = pNode->m_pLeft; } } return nullptr; } /* 删除的情况: 1. 叶子节点,直接删掉 2. 只有左孩子 3. 只有右孩子 4. 有两个孩子,则在左子树中查找最大值的结点, 将其拷贝到待删除节点,删除最大值节点 */ void CAVLTree::Delete(const int& nVal) { TreeNode* pNode = Find(nVal); DeleteNode(pNode); } /* 删除的情况: 1. 叶子节点,直接删掉 2. 只有左孩子 3. 只有右孩子 4. 有两个孩子,则在左子树中查找最大值的结点, 将其拷贝到待删除节点,删除最大值节点 */ void CAVLTree::DeleteNode(TreeNode* pNodeDel) { //没有左孩子和右孩子 if (pNodeDel->m_pLeft == nullptr && pNodeDel->m_pRight == nullptr) { TreeNode* pParent = pNodeDel->m_pParent; if (pParent == nullptr) { m_pRoot = nullptr; delete pNodeDel; return; } //被删除结点是父结点的左孩子,父结点左孩子置空 if (pParent->m_pLeft == pNodeDel) { pParent->m_pLeft = nullptr; } //被删除结点是父结点的右孩子,父结点右孩子置空 else { pParent->m_pRight = nullptr; } delete pNodeDel; return; } //只有左孩子 if (pNodeDel->m_pLeft != nullptr && pNodeDel->m_pRight == nullptr) { /* 删除B C C B --> A A C C B --> A A */ TreeNode* pB = pNodeDel; TreeNode* pC = pB->m_pParent; TreeNode* pA = pB->m_pLeft; //删除结点为根结点 if (pC == nullptr) { m_pRoot = pA; pA->m_pParent = nullptr; delete pB; return; } if (pB == pC->m_pLeft) { pC->m_pLeft = pA; } else { pC->m_pRight = pA; } pA->m_pParent = pC; delete pB; return; } //只有右孩子 if (pNodeDel->m_pLeft == nullptr && pNodeDel->m_pRight != nullptr) { /* 删除B C C B --> A A C C B --> A A */ TreeNode* pB = pNodeDel; TreeNode* pC = pB->m_pParent; TreeNode* pA = pB->m_pRight; //删除结点为根结点 if (pC == nullptr) { m_pRoot = pA; pA->m_pParent = nullptr; delete pB; return; } if (pB == pC->m_pRight) { pC->m_pRight = pA; } else { pC->m_pLeft = pA; } pA->m_pParent = pC; delete pB; return; } //同时有左孩子和右孩子 //查找左子树中最大值的结点 TreeNode* pMaxNode = pNodeDel->m_pLeft; while (pMaxNode->m_pRight != nullptr) { pMaxNode = pMaxNode->m_pRight; } pNodeDel->m_nVal = pMaxNode->m_nVal; DeleteNode(pMaxNode); } void CAVLTree::AdjustHeight(TreeNode* pNode) { TreeNode* pCurNode = pNode; while (pCurNode != nullptr) { //取左孩子和右孩子高度最大的值,然后+1 pCurNode->m_hHeight = std::max(GetHeight(pCurNode->m_pLeft), GetHeight(pCurNode->m_pRight)) + 1; if (GetHeight(pCurNode->m_pLeft) - GetHeight(pCurNode->m_pRight) > 1) { TreeNode* pB = pCurNode->m_pLeft; if (GetHeight(pB->m_pLeft) > GetHeight(pB->m_pRight)) { /* B的左孩子比右孩子高,对C右旋 C B B --> A C A */ RotateRight(pCurNode); } else { /* B的右孩子比左孩子高,先对B进行左旋,再对C右旋 C C A B --> A --> B C A B */ RotateLeft(pB); RotateRight(pCurNode); } } else if (GetHeight(pCurNode->m_pRight) - GetHeight(pCurNode->m_pLeft) > 1) { TreeNode* pB = pCurNode->m_pRight; if (GetHeight(pB->m_pRight) > GetHeight(pB->m_pLeft)) { /* B的右孩子比左孩子高,对C左旋 C B B --> C A A */ RotateLeft(pCurNode); } else { /* B的左孩子比右孩子高,先对B进行右旋,再对C左旋 C C A B --> A --> C B A B */ RotateRight(pB); RotateLeft(pCurNode); } } //继续遍历父结点 pCurNode = pCurNode->m_pParent; } } int CAVLTree::GetHeight(TreeNode* pNode) { if (pNode == nullptr) { return 0; } return pNode->m_hHeight; } void CAVLTree::RotateRight(TreeNode* pNode) { /* C的左孩子与右孩子的高度差大于1, 向右旋转 P P C B B k1 --> A C A k2 k2 k1 */ TreeNode* pP = pNode->m_pParent; TreeNode* pC = pNode; TreeNode* pB = pC->m_pLeft; TreeNode* pA = pB->m_pLeft; TreeNode* pK1 = pC->m_pRight; TreeNode* pK2 = pB->m_pRight; if (pP == nullptr) { //C是根结点 m_pRoot = pB; } else { //C不是根结点 if (pP->m_pLeft == pC) { pP->m_pLeft = pB; } else { pP->m_pRight = pB; } } pC->m_pParent = pB; pC->m_pLeft = pK2; pB->m_pParent = pP; pB->m_pRight = pC; if (pK2 != nullptr) { pK2->m_pParent = pC; } //修改高度 pC->m_hHeight = max(GetHeight(pC->m_pLeft), GetHeight(pC->m_pRight)) + 1; pB->m_hHeight = max(GetHeight(pB->m_pLeft), GetHeight(pB->m_pRight)) + 1; } void CAVLTree::RotateLeft(TreeNode* pNode) { /* C的右孩子与做孩子的高度差大于1, 向右旋转 P P C B k1 B --> C A k2 A k1 k2 */ TreeNode* pP = pNode->m_pParent; TreeNode* pC = pNode; TreeNode* pK1 = pC->m_pLeft; TreeNode* pB = pC->m_pRight; TreeNode* pK2 = pB->m_pLeft; TreeNode* pA = pB->m_pRight; pC->m_pRight = pK2; pC->m_pParent = pB; pB->m_pLeft = pC; pB->m_pParent = pP; if (pK2 != nullptr) { pK2->m_pParent = pC; } if (pP == nullptr) { m_pRoot = pB; } else { if (pP->m_pLeft == pC) { pP->m_pLeft = pB; } else { pP->m_pRight = pB; } } //修改高度 pC->m_hHeight = max(GetHeight(pC->m_pLeft), GetHeight(pC->m_pRight)) + 1; pB->m_hHeight = max(GetHeight(pB->m_pLeft), GetHeight(pB->m_pRight)) + 1; }
原文:https://www.cnblogs.com/Mj-NaijAm/p/13606833.html