with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=tf.nn.relu, weights_initializer=tf.glorot_uniform_initializer(), biases_initializer=tf.constant_initializer(0)): net = slim.conv2d(inputs, 64, [11, 11], 4)#步长默认是1,这里改成4了;64是输出特征图个数 net = slim.max_pool2d(net, [3, 3]) net = slim.conv2d(net, 192, [5, 5]) net = slim.max_pool2d(net, [3, 3]) net = slim.conv2d(net, 384, [3, 3]) net = slim.conv2d(net, 384, [3, 3]) net = slim.conv2d(net, 256, [3, 3]) net = slim.max_pool2d(net, [3, 3]) # 数据扁平化 net = slim.flatten(net) net = slim.fully_connected(net, 1024) net = slim.dropout(net, is_training=is_training) net0 = slim.fully_connected(net, num_classes, activation_fn=tf.nn.softmax) net1 = slim.fully_connected(net, num_classes, activation_fn=tf.nn.softmax) net2 = slim.fully_connected(net, num_classes, activation_fn=tf.nn.softmax) net3 = slim.fully_connected(net, num_classes, activation_fn=tf.nn.softmax)
原文:https://www.cnblogs.com/yunshangyue71/p/13611286.html