首页 > 其他 > 详细

tensorflow构建网络

时间:2020-09-04 08:40:52      阅读:62      评论:0      收藏:0      [点我收藏+]
with slim.arg_scope([slim.conv2d, slim.fully_connected],
                         activation_fn=tf.nn.relu,
                         weights_initializer=tf.glorot_uniform_initializer(),
                         biases_initializer=tf.constant_initializer(0)):
        
        net = slim.conv2d(inputs, 64, [11, 11], 4)#步长默认是1,这里改成4了;64是输出特征图个数
        net = slim.max_pool2d(net, [3, 3])
        net = slim.conv2d(net, 192, [5, 5])
        net = slim.max_pool2d(net, [3, 3])
        net = slim.conv2d(net, 384, [3, 3])
        net = slim.conv2d(net, 384, [3, 3])
        net = slim.conv2d(net, 256, [3, 3])
        net = slim.max_pool2d(net, [3, 3])
        
        # 数据扁平化
        net = slim.flatten(net)
        net = slim.fully_connected(net, 1024)
        net = slim.dropout(net, is_training=is_training)
        
        net0 = slim.fully_connected(net, num_classes, activation_fn=tf.nn.softmax)
        net1 = slim.fully_connected(net, num_classes, activation_fn=tf.nn.softmax)
        net2 = slim.fully_connected(net, num_classes, activation_fn=tf.nn.softmax)
        net3 = slim.fully_connected(net, num_classes, activation_fn=tf.nn.softmax)

 

tensorflow构建网络

原文:https://www.cnblogs.com/yunshangyue71/p/13611286.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!