An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.
Each input file contains one test case. For each case, the first line contains a positive integer N (≤30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.
For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop
3 4 2 6 5 1
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<stdbool.h>
#define MaxSize 30
typedef struct Stack *PtrToStack;
struct Stack {
int top;
char stack[MaxSize];
};
char preOrder[MaxSize + 1]; //位置0不存节点
char inOrder[MaxSize + 1];
char postOrder[MaxSize + 1];
void BuildTree(PtrToStack S, char preOrder[], char inOrder[], char postOrder[], int N) {
char oprtn[5];
int i;
int j = 1;
int k = 1;
int node;
for (i = 1; i <= 2*N; i++) {
scanf("%s", oprtn);
if (strcmp(oprtn, "push") == 0) { //push
scanf("%d", &node);
preOrder[j++] = node;
S->stack[S->top++] = node;
}else { //pop
char temp = S->stack[--S->top];
inOrder[k++] = temp;
}
}
}
void Solve(char preOrder[], char inOrder[], char postOrder[], int Num, int preL, int inL, int postL) {
/*Num遍历时的节点总数 不是总的节点数, first先序遍历起始点, left与right是后序数组的区间*/
int i,index,lNum,rNum;
if (Num == 0) return;
if (Num==1) {
postOrder[postL] = preOrder[preL];
return;
}
postOrder[postL+Num-1] = preOrder[preL]; //先序遍历第一个节点为根节点,放在后序遍历区间最后一个位置
for (i = 0; i <= MaxSize; i++) { //找到根节点在中序遍历中的位置
if (inOrder[i] == preOrder[preL]) {
index = i;
break;
}
}
lNum = index - inL; //左子树节点个数
rNum = inL + Num - index - 1; //inL用于计算左右子树的节点数的
Solve(preOrder, inOrder, postOrder, lNum, preL+1, inL, postL);
Solve(preOrder, inOrder, postOrder, rNum, preL+lNum+1, index+1, postL + lNum);
}
int main()
{
int N;
bool first = true; //输出是否为第一个元素的标记
PtrToStack S = (PtrToStack)malloc(sizeof(struct Stack)); //记得free
S->top = 0;
scanf("%d", &N);
BuildTree(S, preOrder, inOrder, postOrder,N);
Solve(preOrder, inOrder, postOrder, N, 1, 1, 1);
for (int i = 1; i <= N;i++) {
if (first) {
printf("%d", postOrder[i]);
first = false;
}else {
printf(" %d", postOrder[i]);
}
}
return 0;
}
原文:https://www.cnblogs.com/TangYJHappen/p/13624272.html