首页 > 其他 > 详细

08_GAN_double_moon

时间:2020-09-12 16:19:46      阅读:88      评论:0      收藏:0      [点我收藏+]

生成式对抗网络 (Generative Adversarial Networks)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_moons
import torch

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 这是一个展示数据的函数
def plot_data(ax, X, Y, color = ‘bone‘):
    plt.axis(‘off‘)
    ax.scatter(X[:, 0], X[:, 1], s=1, c=Y, cmap=color)

借助于 sklearn.datasets.make_moons 库,生成双半月形的数据,同时把数据点画出来。

可以看出,数据散点呈现两个半月形状。

X, y = make_moons(n_samples=2000, noise=0.05)
n_samples = X.shape[0]
Y = np.ones(n_samples)
fig, ax = plt.subplots(1, 1, facecolor=‘#4B6EA9‘)
plot_data(ax, X, Y)
plt.show()

技术分享图片

一个简单的 GAN

生成器和判别器的结构都非常简单,具体如下:

生成器: 32 ==> 128 ==> 2 判别器: 2 ==> 128 ==> 1 生成器生成的是样本,即一组坐标(x,y),我们希望生成器能够由一组任意的 32组噪声生成座标(x,y)处于两个半月形状上。

判别器输入的是一组座标(x,y),最后一层是sigmoid函数,是一个范围在(0,1)间的数,即样本为真或者假的置信度。如果输入的是真样本,得到的结果尽量接近1;如果输入的是假样本,得到的结果尽量接近0。

import torch.nn as nn
z_dim = 32
hidden_dim = 128
#定义生成器
net_G = nn.Sequential(
    nn.Linear(z_dim , hidden_dim),
    nn.ReLU(),
    nn.Linear(hidden_dim,2))
#定义判别器
net_D = nn.Sequential(
            nn.Linear(2,hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim,1),
            nn.Sigmoid())

# 网络放到 GPU 上
net_G = net_G.to(device)
net_D = net_D.to(device)

# 定义网络的优化器
optimizer_G = torch.optim.Adam(net_G.parameters(),lr=0.0001)
optimizer_D = torch.optim.Adam(net_D.parameters(),lr=0.0001)

下面为对抗训练的过程:

batch_size = 50
nb_epochs = 1000

loss_D_epoch = []
loss_G_epoch = []

for e in range(nb_epochs):
    np.random.shuffle(X)
    real_samples = torch.from_numpy(X).type(torch.FloatTensor)
    loss_G = 0
    loss_D = 0
    for t, real_batch in enumerate(real_samples.split(batch_size)):
        # 固定生成器G,改进判别器D
        # 使用normal_()函数生成一组随机噪声,输入G得到一组样本
        z = torch.empty(batch_size,z_dim).normal_().to(device)
        fake_batch = net_G(z)
        # 将真、假样本分别输入判别器,得到结果
        D_scores_on_real = net_D(real_batch.to(device))
        D_scores_on_fake = net_D(fake_batch)
        # 优化过程中,假样本的score会越来越小,真样本的score会越来越大,下面 loss 的定义刚好符合这一规律,
        # 要保证loss越来越小,真样本的score前面要加负号
        # 要保证loss越来越小,假样本的score前面是正号(负负得正)
        loss = -torch.mean(torch.log(1-D_scores_on_fake) + torch.log(D_scores_on_real))
        # 梯度清零
        optimizer_D.zero_grad()
        # 反向传播优化
        loss.backward()
        # 更新全部参数
        optimizer_D.step()
        loss_D += loss
                    
        # 固定判别器,改进生成器
        # 生成一组随机噪声,输入生成器得到一组假样本
        z = torch.empty(batch_size,z_dim).normal_().to(device)
        fake_batch = net_G(z)
        # 假样本输入判别器得到 score
        D_scores_on_fake = net_D(fake_batch)
        # 我们希望假样本能够骗过生成器,得到较高的分数,下面的 loss 定义也符合这一规律
        # 要保证 loss 越来越小,假样本的前面要加负号
        loss = -torch.mean(torch.log(D_scores_on_fake))
        optimizer_G.zero_grad()
        loss.backward()
        optimizer_G.step()
        loss_G += loss
    
    if e % 50 ==0:
        print(f‘\n Epoch {e} , D loss: {loss_D}, G loss: {loss_G}‘) 

    loss_D_epoch.append(loss_D)
    loss_G_epoch.append(loss_G)

Epoch 0 , D loss: 56.755985260009766, G loss: 31.247453689575195

Epoch 50 , D loss: 54.699317932128906, G loss: 29.562366485595703

Epoch 100 , D loss: 53.91822814941406, G loss: 28.176292419433594

Epoch 150 , D loss: 53.08674240112305, G loss: 27.95374298095703

Epoch 200 , D loss: 50.51228332519531, G loss: 29.543210983276367

Epoch 250 , D loss: 50.7359619140625, G loss: 29.252708435058594

Epoch 300 , D loss: 53.74419403076172, G loss: 28.915340423583984

Epoch 350 , D loss: 54.152130126953125, G loss: 33.3064079284668

Epoch 400 , D loss: 54.90654373168945, G loss: 26.523265838623047

Epoch 450 , D loss: 53.367496490478516, G loss: 34.682010650634766

Epoch 500 , D loss: 55.935176849365234, G loss: 25.24538230895996

Epoch 550 , D loss: 55.915977478027344, G loss: 31.561960220336914

Epoch 600 , D loss: 51.55472946166992, G loss: 32.71846389770508

Epoch 650 , D loss: 56.22766876220703, G loss: 24.23963737487793

Epoch 700 , D loss: 49.659446716308594, G loss: 27.562183380126953

Epoch 750 , D loss: 47.86740493774414, G loss: 28.97980499267578

Epoch 800 , D loss: 47.91128921508789, G loss: 29.37699317932129

Epoch 850 , D loss: 50.29985427856445, G loss: 27.83837127685547

Epoch 900 , D loss: 53.73185729980469, G loss: 27.47956085205078

Epoch 950 , D loss: 53.10669708251953, G loss: 32.23074722290039

显示 loss 的变化情况:

plt.plot(loss_D_epoch)
plt.plot(loss_G_epoch)

技术分享图片

利用生成器生成一组假样本,观察是否符合两个半月形状的数据分布:

z = torch.empty(n_samples,z_dim).normal_().to(device)
fake_samples = net_G(z)
fake_data = fake_samples.cpu().data.numpy()

fig, ax = plt.subplots(1, 1, facecolor=‘#4B6EA9‘)
all_data = np.concatenate((X,fake_data),axis=0)
Y2 = np.concatenate((np.ones(n_samples),np.zeros(n_samples)))
plot_data(ax, all_data, Y2)
plt.show()

技术分享图片

其中,白色的是原来的真实样本,黑色的点是生成器生成的样本。

看起来,效果是不令人满意的。现在把学习率修改为 0.001,batch_size改大到250,再试一次:

# 定义网络的优化器
optimizer_G = torch.optim.Adam(net_G.parameters(),lr=0.001)
optimizer_D = torch.optim.Adam(net_D.parameters(),lr=0.001)

batch_size = 250

loss_D_epoch = []
loss_G_epoch = []

for e in range(nb_epochs):
    np.random.shuffle(X)
    real_samples = torch.from_numpy(X).type(torch.FloatTensor)
    loss_G = 0
    loss_D = 0
    for t, real_batch in enumerate(real_samples.split(batch_size)):
        # 固定生成器G,改进判别器D
        # 使用normal_()函数生成一组随机噪声,输入G得到一组样本
        z = torch.empty(batch_size,z_dim).normal_().to(device)
        fake_batch = net_G(z)
        # 将真、假样本分别输入判别器,得到结果
        D_scores_on_real = net_D(real_batch.to(device))
        D_scores_on_fake = net_D(fake_batch)
        # 优化过程中,假样本的score会越来越小,真样本的score会越来越大,下面 loss 的定义刚好符合这一规律,
        # 要保证loss越来越小,真样本的score前面要加负号
        # 要保证loss越来越小,假样本的score前面是正号(负负得正)
        loss = -torch.mean(torch.log(1-D_scores_on_fake) + torch.log(D_scores_on_real))
        # 梯度清零
        optimizer_D.zero_grad()
        # 反向传播优化
        loss.backward()
        # 更新全部参数
        optimizer_D.step()
        loss_D += loss
                    
        # 固定判别器,改进生成器
        # 生成一组随机噪声,输入生成器得到一组假样本
        z = torch.empty(batch_size,z_dim).normal_().to(device)
        fake_batch = net_G(z)
        # 假样本输入判别器得到 score
        D_scores_on_fake = net_D(fake_batch)
        # 我们希望假样本能够骗过生成器,得到较高的分数,下面的 loss 定义也符合这一规律
        # 要保证 loss 越来越小,假样本的前面要加负号
        loss = -torch.mean(torch.log(D_scores_on_fake))
        optimizer_G.zero_grad()
        loss.backward()
        optimizer_G.step()
        loss_G += loss
    
    if e % 50 ==0:
        print(f‘\n Epoch {e} , D loss: {loss_D}, G loss: {loss_G}‘) 

    loss_D_epoch.append(loss_D)
    loss_G_epoch.append(loss_G)

Epoch 0 , D loss: 8.75554084777832, G loss: 7.259755611419678

Epoch 50 , D loss: 10.344388008117676, G loss: 7.240558624267578

Epoch 100 , D loss: 11.16689395904541, G loss: 6.920253276824951

Epoch 150 , D loss: 11.00655460357666, G loss: 5.303454875946045

Epoch 200 , D loss: 9.425509452819824, G loss: 6.961507320404053

Epoch 250 , D loss: 9.168994903564453, G loss: 6.767005920410156

Epoch 300 , D loss: 10.260116577148438, G loss: 8.618905067443848

Epoch 350 , D loss: 9.377771377563477, G loss: 7.248937606811523

Epoch 400 , D loss: 9.875764846801758, G loss: 6.6888227462768555

Epoch 450 , D loss: 11.444906234741211, G loss: 6.769672393798828

Epoch 500 , D loss: 10.458311080932617, G loss: 5.506790637969971

Epoch 550 , D loss: 9.636507987976074, G loss: 6.657134532928467

Epoch 600 , D loss: 9.928154945373535, G loss: 7.593188285827637

Epoch 650 , D loss: 10.96129322052002, G loss: 7.4569315910339355

Epoch 700 , D loss: 10.582127571105957, G loss: 5.888792037963867

Epoch 750 , D loss: 9.59968376159668, G loss: 6.870519638061523

Epoch 800 , D loss: 10.376473426818848, G loss: 6.498831272125244

Epoch 850 , D loss: 10.90378475189209, G loss: 5.754330158233643

Epoch 900 , D loss: 10.771576881408691, G loss: 5.769700050354004

Epoch 950 , D loss: 10.896147727966309, G loss: 5.742316722869873

loss 明显减小了,我们再次利用噪声生成一组数据观察一下:

z = torch.empty(n_samples,z_dim).normal_().to(device)
fake_samples = net_G(z)
fake_data = fake_samples.cpu().data.numpy()

fig, ax = plt.subplots(1, 1, facecolor=‘#4B6EA9‘)
all_data = np.concatenate((X,fake_data),axis=0)
Y2 = np.concatenate((np.ones(n_samples),np.zeros(n_samples)))
plot_data(ax, all_data, Y2)
plt.show()

技术分享图片

看得出来,随着batch size 的增大, loss 的降低,效果明显改善了~ (^_^)

下面我们生成更多的样本观察一下,结果也是非常有趣。

z = torch.empty(10*n_samples,z_dim).normal_().to(device)
fake_samples = net_G(z)
fake_data = fake_samples.cpu().data.numpy()
fig, ax = plt.subplots(1, 1, facecolor=‘#4B6EA9‘)
all_data = np.concatenate((X,fake_data),axis=0)
Y2 = np.concatenate((np.ones(n_samples),np.zeros(10*n_samples)))
plot_data(ax, all_data, Y2)
plt.show();

技术分享图片

08_GAN_double_moon

原文:https://www.cnblogs.com/Dingding03/p/13656733.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!