生成模型
低维向量——高维数据(图像、文本、语音)
生成式对抗网络的目的就是训练一个这样的生成模型,生成我们想要的数据
首先实现CGAN。下面分别是 判别器 和 生成器 的网络结构
下面为初始化
然后开始训练
# 开始训练,一共训练total_epochs for epoch in range(total_epochs): # torch.nn.Module.train() 指的是模型启用 BatchNormalization 和 Dropout # torch.nn.Module.eval() 指的是模型不启用 BatchNormalization 和 Dropout # 因此,train()一般在训练时用到, eval() 一般在测试时用到 generator = generator.train() # 训练一个epoch for i, data in enumerate(dataloader): # 加载真实数据 real_images, real_labels = data real_images = real_images.to(device) # 把对应的标签转化成 one-hot 类型 tmp = torch.FloatTensor(real_labels.size(0), 10).zero_() real_labels = tmp.scatter_(dim=1, index=torch.LongTensor(real_labels.view(-1, 1)), value=1) real_labels = real_labels.to(device) # 生成数据 # 用正态分布中采样batch_size个随机噪声 z = torch.randn([batch_size, z_dim]).to(device) # 生成 batch_size 个 ont-hot 标签 c = torch.FloatTensor(batch_size, 10).zero_() c = c.scatter_(dim=1, index=torch.LongTensor(np.random.choice(10, batch_size).reshape([batch_size, 1])), value=1) c = c.to(device) # 生成数据 fake_images = generator(z,c) # 计算判别器损失,并优化判别器 real_loss = bce(discriminator(real_images, real_labels), ones) fake_loss = bce(discriminator(fake_images.detach(), c), zeros) d_loss = real_loss + fake_loss d_optimizer.zero_grad() d_loss.backward() d_optimizer.step() # 计算生成器损失,并优化生成器 g_loss = bce(discriminator(fake_images, c), ones) g_optimizer.zero_grad() g_loss.backward() g_optimizer.step() # 输出损失 print("[Epoch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, total_epochs, d_loss.item(), g_loss.item()))
随机噪声生成一组图像
#用于生成效果图 # 生成100个随机噪声向量 fixed_z = torch.randn([100, z_dim]).to(device) # 生成100个one_hot向量,每类10个 fixed_c = torch.FloatTensor(100, 10).zero_() fixed_c = fixed_c.scatter_(dim=1, index=torch.LongTensor(np.array(np.arange(0, 10).tolist()*10).reshape([100, 1])), value=1) fixed_c = fixed_c.to(device) generator = generator.eval() fixed_fake_images = generator(fixed_z, fixed_c) plt.figure(figsize=(8, 8)) for j in range(10): for i in range(10): img = fixed_fake_images[j*10+i, 0, :, :].detach().cpu().numpy() img = img.reshape([28, 28]) plt.subplot(10, 10, j*10+i+1) plt.imshow(img, ‘gray‘)
结果
原文:https://www.cnblogs.com/YangKai66/p/13658150.html