堆排序是利用堆这种数据结构而设计的一种排序算法, 堆排序是一种选择排序, 它的最坏, 最好, 平均时间复杂度均为 O(nlogn), 它也是不稳定排序。
堆是具有以下性质的完全二叉树: 每个结点的值都大于或等于其左右孩子结点的值, 称为大顶堆,注意 : 没有要求结点的左孩子的值和右孩子的值的大小关系。
每个结点的值都小于或等于其左右孩子结点的值, 称为小顶堆
大顶堆举例说明
我们对堆中的结点按层进行编号,映射到数组中就是下面这个样子:
大顶堆特点:
arr[i] >= arr[2*i+1] && arr[i] >= arr[2*i+2] // i 对应第几个节点,i从0开始编号
小顶堆举例说明
小顶堆特点:
arr[i] <= arr[2*i+1] && arr[i] <= arr[2*i+2] // i 对应第几个节点,i从0开始编号
一般升序采用大顶堆,降序采用小顶堆
堆排序的基本思想是:
可以看到在构建大顶堆的过程中, 元素的个数逐渐减少, 最后就得到一个有序序列了
再简单总结下堆排序的基本思路:
要求: 给你一个数组 {4,6,8,5,9} , 要求使用堆排序法, 将数组升序排序。
public class HeapSort {
public static void main(String[] args) {
//要求将数组进行升序排序
int arr[] = {4, 6, 8, 5, 9};
heapSort(arr);
System.out.println("排序后=" + Arrays.toString(arr));
}
//编写一个堆排序的方法
public static void heapSort(int arr[]) {
int temp;
System.out.println("堆排序!!");
// 1. 将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
/// 第一个非叶子结点 arr.length/2-1
/// 经过调整后,堆中最大的数,在数组的 0 位上
for (int i = arr.length / 2 - 1; i >= 0; i--) {
adjustHeap(arr, i, arr.length);
}
/*
* 2. 将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
* 3. 重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
*/
for (int j = arr.length - 1; j > 0; j--) {
//交换
temp = arr[j];
arr[j] = arr[0];
arr[0] = temp;
adjustHeap(arr, 0, j);
}
//System.out.println("数组=" + Arrays.toString(arr));
}
//将一个数组(二叉树), 调整成一个大顶堆
/**
* 功能: 完成 将 以 i 对应的非叶子结点的树调整成大顶堆
* 举例 int arr[] = {4, 6, 8, 5, 9}; => i = 1 => adjustHeap => 得到 {4, 9, 8, 5, 6}
* 如果我们再次调用 adjustHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9,6,8,5, 4}
*
* @param arr 待调整的数组
* @param i 表示非叶子结点在数组中索引
* @param lenght 表示对多少个元素继续调整, length 是在逐渐的减少
*/
public static void adjustHeap(int arr[], int i, int lenght) {
int temp = arr[i];//先取出当前元素的值,保存在临时变量
//开始调整
//说明
//1. k = i * 2 + 1 k 是 i结点的左子结点
for (int k = i * 2 + 1; k < lenght; k = k * 2 + 1) {
if (k + 1 < lenght && arr[k] < arr[k + 1]) { //说明左子结点的值小于右子结点的值
k++; // k 指向右子结点,因为要将较大的节点交换到父节点
}
if (arr[k] > temp) { //如果子结点大于父结点
arr[i] = arr[k]; //把较大的值赋给当前结点
i = k; //!!! i 指向 k,继续循环比较
} else {
break;//!
}
}
//当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了 最顶(局部)
arr[i] = temp;//将temp值放到调整后的位置
}
}
给你一个数列 {13, 7, 8, 3, 29, 6, 1}, 要求转成一颗赫夫曼树.
构成赫夫曼树的步骤:
public class HuffmanTree {
public static void main(String[] args) {
int arr[] = {13, 7, 8, 3, 29, 6, 1};
Node root = createHuffmanTree(arr);
// 前序遍历
preOrder(root);
}
//编写一个前序遍历的方法
public static void preOrder(Node root) {
if (root != null) {
root.preOrder();
} else {
System.out.println("是空树,不能遍历~~");
}
}
// 创建赫夫曼树的方法
/**
* @param arr 需要创建成哈夫曼树的数组
* @return 创建好后的赫夫曼树的root结点
*/
public static Node createHuffmanTree(int[] arr) {
// 第一步为了操作方便
// 1. 遍历 arr 数组
// 2. 将arr的每个元素构成成一个Node
// 3. 将Node 放入到ArrayList中
List<Node> nodes = new ArrayList<Node>();
for (int value : arr) {
nodes.add(new Node(value));
}
//我们处理的过程是一个循环的过程
while (nodes.size() > 1) {
//排序 从小到大
Collections.sort(nodes);
System.out.println("nodes =" + nodes);
//取出根节点权值最小的两颗二叉树
//(1) 取出权值最小的结点(二叉树)
Node leftNode = nodes.get(0);
//(2) 取出权值第二小的结点(二叉树)
Node rightNode = nodes.get(1);
//(3)构建一颗新的二叉树
Node parent = new Node(leftNode.value + rightNode.value);
parent.left = leftNode;
parent.right = rightNode;
//(4)从ArrayList删除处理过的二叉树
nodes.remove(leftNode);
nodes.remove(rightNode);
//(5)将parent加入到nodes
nodes.add(parent);
}
//返回哈夫曼树的root结点
return nodes.get(0);
}
}
// 创建结点类
// 为了让Node 对象持续排序Collections集合排序
// 让Node 实现Comparable接口
class Node implements Comparable<Node> {
int value; // 结点权值
Node left; // 指向左子结点
Node right; // 指向右子结点
//写一个前序遍历
public void preOrder() {
System.out.println(this);
if (this.left != null) {
this.left.preOrder();
}
if (this.right != null) {
this.right.preOrder();
}
}
public Node(int value) {
this.value = value;
}
@Override
public String toString() {
return "Node [value=" + value + "]";
}
@Override
public int compareTo(Node o) {
// 表示从小到大排序
return this.value - o.value;
}
}
i like like like java do you like a java // 共40个字符(包括空格)
d:1 y:1 u:1 j:2 v:2 o:2 l:4 k:4 e:4 i:5 a:5 :9 // 各个字符对应的个数
0= , 1=a, 10=i, 11=e, 100=k, 101=l, 110=o, 111=v, 1000=j, 1001=u, 1010=y, 1011=d
说明:按照各个字符出现的次数进行编码,原则是出现次数越多的,则编码越小,比如 空格出现了9 次, 编码为0 ,其它依次类推.
按照上面给各个字符规定的编码,则我们在传输 "i like like like java do you like a java" 数据时,编码就是 10010110100...
字符的编码都不能是其他字符编码的前缀,符合此要求的编码叫做前缀编码, 即不能匹配到重复的编码
//根据赫夫曼树,给各个字符
//规定编码,向左的路径为 0
//向右的路径为 1 , 编码如下:
o: 1000 u: 10010 d: 100110 y: 100111 i: 101
a : 110 k: 1110 e: 1111 j: 0000 v: 0001
l: 001 : 01
按照上面的赫夫曼编码,我们的"i like like like java do you like a java" 字符串对应的编码为 (注意这里我们使用的无损压缩)
1010100110111101111010011011110111101001101111011110100001100001110011001111000011001111000100100100110111101111011100100001100001110
长度为 : 133
说明:
原来长度是 359 , 压缩了 (359-133) / 359 = 62.9%
此编码满足前缀编码, 即字符的编码都不能是其他字符编码的前缀。不会造成匹配的多义性
赫夫曼编码压缩文件注意事项:
public class HuffmanCode {
public static void main(String[] args) {
//测试压缩文件
// String srcFile = "d://Uninstall.xml";
// String dstFile = "d://Uninstall.zip";
//
// zipFile(srcFile, dstFile);
// System.out.println("压缩文件ok~~");
//测试解压文件
String zipFile = "d://Uninstall.zip";
String dstFile = "d://Uninstall2.xml";
unZipFile(zipFile, dstFile);
System.out.println("解压成功!");
/*
String content = "i like like like java do you like a java";
byte[] contentBytes = content.getBytes();
System.out.println(contentBytes.length); //40
byte[] huffmanCodesBytes= huffmanZip(contentBytes);
System.out.println("压缩后的结果是:" + Arrays.toString(huffmanCodesBytes) + " 长度= " + huffmanCodesBytes.length);
//测试一把byteToBitString方法
//System.out.println(byteToBitString((byte)1));
byte[] sourceBytes = decode(huffmanCodes, huffmanCodesBytes);
System.out.println("原来的字符串=" + new String(sourceBytes)); // "i like like like java do you like a java"
*/
//如何将 数据进行解压(解码)
//分步过程
/*
List<Node> nodes = getNodes(contentBytes);
System.out.println("nodes=" + nodes);
//测试一把,创建的赫夫曼树
System.out.println("赫夫曼树");
Node huffmanTreeRoot = createHuffmanTree(nodes);
System.out.println("前序遍历");
huffmanTreeRoot.preOrder();
//测试一把是否生成了对应的赫夫曼编码
Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);
System.out.println("~生成的赫夫曼编码表= " + huffmanCodes);
//测试
byte[] huffmanCodeBytes = zip(contentBytes, huffmanCodes);
System.out.println("huffmanCodeBytes=" + Arrays.toString(huffmanCodeBytes));//17
//发送huffmanCodeBytes 数组 */
}
//编写一个方法,完成对压缩文件的解压
/**
* @param zipFile 准备解压的文件
* @param dstFile 将文件解压到哪个路径
*/
public static void unZipFile(String zipFile, String dstFile) {
//定义文件输入流
InputStream is = null;
//定义一个对象输入流
ObjectInputStream ois = null;
//定义文件的输出流
OutputStream os = null;
try {
//创建文件输入流
is = new FileInputStream(zipFile);
//创建一个和 is关联的对象输入流
ois = new ObjectInputStream(is);
//读取byte数组 huffmanBytes
byte[] huffmanBytes = (byte[]) ois.readObject();
//读取赫夫曼编码表
Map<Byte, String> huffmanCodes = (Map<Byte, String>) ois.readObject();
//解码
byte[] bytes = decode(huffmanCodes, huffmanBytes);
//将bytes 数组写入到目标文件
os = new FileOutputStream(dstFile);
//写数据到 dstFile 文件
os.write(bytes);
} catch (Exception e) {
// TODO: handle exception
System.out.println(e.getMessage());
} finally {
try {
os.close();
ois.close();
is.close();
} catch (Exception e2) {
// TODO: handle exception
System.out.println(e2.getMessage());
}
}
}
//编写方法,将一个文件进行压缩
/**
* @param srcFile 你传入的希望压缩的文件的全路径
* @param dstFile 我们压缩后将压缩文件放到哪个目录
*/
public static void zipFile(String srcFile, String dstFile) {
//创建输出流
OutputStream os = null;
ObjectOutputStream oos = null;
//创建文件的输入流
FileInputStream is = null;
try {
//创建文件的输入流
is = new FileInputStream(srcFile);
//创建一个和源文件大小一样的byte[]
byte[] b = new byte[is.available()];
//读取文件
is.read(b);
//直接对源文件压缩
byte[] huffmanBytes = huffmanZip(b);
//创建文件的输出流, 存放压缩文件
os = new FileOutputStream(dstFile);
//创建一个和文件输出流关联的ObjectOutputStream
oos = new ObjectOutputStream(os);
//把 赫夫曼编码后的字节数组写入压缩文件
oos.writeObject(huffmanBytes); //我们是把
//这里我们以对象流的方式写入 赫夫曼编码,是为了以后我们恢复源文件时使用
//注意一定要把赫夫曼编码 写入压缩文件
oos.writeObject(huffmanCodes);
} catch (Exception e) {
// TODO: handle exception
System.out.println(e.getMessage());
} finally {
try {
is.close();
oos.close();
os.close();
} catch (Exception e) {
// TODO: handle exception
System.out.println(e.getMessage());
}
}
}
//完成数据的解压
//思路
//1. 将huffmanCodeBytes [-88, -65, -56, -65, -56, -65, -55, 77, -57, 6, -24, -14, -117, -4, -60, -90, 28]
// 重写先转成 赫夫曼编码对应的二进制的字符串 "1010100010111..."
//2. 赫夫曼编码对应的二进制的字符串 "1010100010111..." =》 对照 赫夫曼编码 =》 "i like like like java do you like a java"
//编写一个方法,完成对压缩数据的解码
/**
* @param huffmanCodes 赫夫曼编码表 map
* @param huffmanBytes 赫夫曼编码得到的字节数组
* @return 就是原来的字符串对应的数组
*/
private static byte[] decode(Map<Byte, String> huffmanCodes, byte[] huffmanBytes) {
//1. 先得到 huffmanBytes 对应的 二进制的字符串 , 形式 1010100010111...
StringBuilder stringBuilder = new StringBuilder();
//将byte数组转成二进制的字符串
for (int i = 0; i < huffmanBytes.length; i++) {
byte b = huffmanBytes[i];
//判断是不是最后一个字节
boolean flag = (i == huffmanBytes.length - 1);
stringBuilder.append(byteToBitString(!flag, b));
}
//把字符串安装指定的赫夫曼编码进行解码
//把赫夫曼编码表进行调换,因为反向查询 a->100 100->a
Map<String, Byte> map = new HashMap<String, Byte>();
for (Map.Entry<Byte, String> entry : huffmanCodes.entrySet()) {
map.put(entry.getValue(), entry.getKey());
}
//创建要给集合,存放byte
List<Byte> list = new ArrayList<>();
//i 可以理解成就是索引,扫描 stringBuilder
for (int i = 0; i < stringBuilder.length(); ) {
int count = 1; // 小的计数器
boolean flag = true;
Byte b = null;
while (flag) {
//1010100010111...
//递增的取出 key 1
String key = stringBuilder.substring(i, i + count);//i 不动,让count移动,指定匹配到一个字符
b = map.get(key);
if (b == null) {//说明没有匹配到
count++;
} else {
//匹配到
flag = false;
}
}
list.add(b);
i += count;//i 直接移动到 count
}
//当for循环结束后,我们list中就存放了所有的字符 "i like like like java do you like a java"
//把list 中的数据放入到byte[] 并返回
byte b[] = new byte[list.size()];
for (int i = 0; i < b.length; i++) {
b[i] = list.get(i);
}
return b;
}
/**
* 将一个byte 转成一个二进制的字符串, 如果看不懂,可以参考我讲的Java基础 二进制的原码,反码,补码
*
* @param b 传入的 byte
* @param flag 标志是否需要补高位如果是true ,表示需要补高位,如果是false表示不补, 如果是最后一个字节,无需补高位
* @return 是该b 对应的二进制的字符串,(注意是按补码返回)
*/
private static String byteToBitString(boolean flag, byte b) {
//使用变量保存 b
int temp = b; //将 b 转成 int
//如果是正数我们还存在补高位
if (flag) {
temp |= 256; //按位与 256 1 0000 0000 | 0000 0001 => 1 0000 0001
}
String str = Integer.toBinaryString(temp); //返回的是temp对应的二进制的补码
if (flag) {
return str.substring(str.length() - 8);
} else {
return str;
}
}
//使用一个方法,将前面的方法封装起来,便于我们的调用.
/**
* @param bytes 原始的字符串对应的字节数组
* @return 是经过 赫夫曼编码处理后的字节数组(压缩后的数组)
*/
private static byte[] huffmanZip(byte[] bytes) {
List<Node> nodes = getNodes(bytes);
//根据 nodes 创建的赫夫曼树
Node huffmanTreeRoot = createHuffmanTree(nodes);
//对应的赫夫曼编码(根据 赫夫曼树)
Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);
//根据生成的赫夫曼编码,压缩得到压缩后的赫夫曼编码字节数组
byte[] huffmanCodeBytes = zip(bytes, huffmanCodes);
return huffmanCodeBytes;
}
//编写一个方法,将字符串对应的byte[] 数组,通过生成的赫夫曼编码表,返回一个赫夫曼编码 压缩后的byte[]
/**
* @param bytes 这时原始的字符串对应的 byte[]
* @param huffmanCodes 生成的赫夫曼编码map
* @return 返回赫夫曼编码处理后的 byte[]
* 举例: String content = "i like like like java do you like a java"; =》 byte[] contentBytes = content.getBytes();
* 返回的是 字符串 "1010100010111111110010001011111111001000101111111100100101001101110001110000011011101000111100101000101111111100110001001010011011100"
* => 对应的 byte[] huffmanCodeBytes ,即 8位对应一个 byte,放入到 huffmanCodeBytes
* huffmanCodeBytes[0] = 10101000(补码) => byte [推导 10101000=> 10101000 - 1 => 10100111(反码)=> 11011000= -88 ]
* huffmanCodeBytes[1] = -88
*/
private static byte[] zip(byte[] bytes, Map<Byte, String> huffmanCodes) {
//1.利用 huffmanCodes 将 bytes 转成 赫夫曼编码对应的字符串
StringBuilder stringBuilder = new StringBuilder();
//遍历bytes 数组
for (byte b : bytes) {
stringBuilder.append(huffmanCodes.get(b));
}
//System.out.println("测试 stringBuilder~~~=" + stringBuilder.toString());
//将 "1010100010111111110..." 转成 byte[]
//统计返回 byte[] huffmanCodeBytes 长度
//一句话 int len = (stringBuilder.length() + 7) / 8;
int len;
if (stringBuilder.length() % 8 == 0) {
len = stringBuilder.length() / 8;
} else {
len = stringBuilder.length() / 8 + 1;
}
//创建 存储压缩后的 byte数组
byte[] huffmanCodeBytes = new byte[len];
int index = 0;//记录是第几个byte
for (int i = 0; i < stringBuilder.length(); i += 8) { //因为是每8位对应一个byte,所以步长 +8
String strByte;
if (i + 8 > stringBuilder.length()) {//不够8位
strByte = stringBuilder.substring(i);
} else {
strByte = stringBuilder.substring(i, i + 8);
}
//将strByte 转成一个byte,放入到 huffmanCodeBytes
huffmanCodeBytes[index] = (byte) Integer.parseInt(strByte, 2);
index++;
}
return huffmanCodeBytes;
}
//生成赫夫曼树对应的赫夫曼编码
//思路:
//1. 将赫夫曼编码表存放在 Map<Byte,String> 形式
// 生成的赫夫曼编码表{32=01, 97=100, 100=11000, 117=11001, 101=1110, 118=11011, 105=101, 121=11010, 106=0010, 107=1111, 108=000, 111=0011}
static Map<Byte, String> huffmanCodes = new HashMap<Byte, String>();
//2. 在生成赫夫曼编码表示,需要去拼接路径, 定义一个StringBuilder 存储某个叶子结点的路径
static StringBuilder stringBuilder = new StringBuilder();
//为了调用方便,我们重载 getCodes
private static Map<Byte, String> getCodes(Node root) {
if (root == null) {
return null;
}
//处理root的左子树
getCodes(root.left, "0", stringBuilder);
//处理root的右子树
getCodes(root.right, "1", stringBuilder);
return huffmanCodes;
}
/**
* 功能:将传入的node结点的所有叶子结点的赫夫曼编码得到,并放入到huffmanCodes集合
*
* @param node 传入结点
* @param code 路径: 左子结点是 0, 右子结点 1
* @param stringBuilder 用于拼接路径
*/
private static void getCodes(Node node, String code, StringBuilder stringBuilder) {
StringBuilder stringBuilder2 = new StringBuilder(stringBuilder);
//将code 加入到 stringBuilder2
stringBuilder2.append(code);
if (node != null) { //如果node == null不处理
//判断当前node 是叶子结点还是非叶子结点
if (node.data == null) { //非叶子结点
//递归处理
//向左递归
getCodes(node.left, "0", stringBuilder2);
//向右递归
getCodes(node.right, "1", stringBuilder2);
} else { //说明是一个叶子结点
//就表示找到某个叶子结点的最后
huffmanCodes.put(node.data, stringBuilder2.toString());
}
}
}
//前序遍历的方法
private static void preOrder(Node root) {
if (root != null) {
root.preOrder();
} else {
System.out.println("赫夫曼树为空");
}
}
/**
* @param bytes 接收字节数组
* @return 返回的就是 List 形式 [Node[date=97 ,weight = 5], Node[]date=32,weight = 9]......],
*/
private static List<Node> getNodes(byte[] bytes) {
//1创建一个ArrayList
ArrayList<Node> nodes = new ArrayList<Node>();
//遍历 bytes , 统计 每一个byte出现的次数->map[key,value]
Map<Byte, Integer> counts = new HashMap<>();
for (byte b : bytes) {
Integer count = counts.get(b);
if (count == null) { // Map还没有这个字符数据,第一次
counts.put(b, 1);
} else {
counts.put(b, count + 1);
}
}
//把每一个键值对转成一个Node 对象,并加入到nodes集合
//遍历map
for (Map.Entry<Byte, Integer> entry : counts.entrySet()) {
nodes.add(new Node(entry.getKey(), entry.getValue()));
}
return nodes;
}
//可以通过List 创建对应的赫夫曼树
private static Node createHuffmanTree(List<Node> nodes) {
while (nodes.size() > 1) {
//排序, 从小到大
Collections.sort(nodes);
//取出第一颗最小的二叉树
Node leftNode = nodes.get(0);
//取出第二颗最小的二叉树
Node rightNode = nodes.get(1);
//创建一颗新的二叉树,它的根节点 没有data, 只有权值
Node parent = new Node(null, leftNode.weight + rightNode.weight);
parent.left = leftNode;
parent.right = rightNode;
//将已经处理的两颗二叉树从nodes删除
nodes.remove(leftNode);
nodes.remove(rightNode);
//将新的二叉树,加入到nodes
nodes.add(parent);
}
//nodes 最后的结点,就是赫夫曼树的根结点
return nodes.get(0);
}
}
//创建Node ,待数据和权值
class Node implements Comparable<Node> {
Byte data; // 存放数据(字符)本身,比如‘a‘ => 97 ‘ ‘ => 32
int weight; //权值, 表示字符出现的次数
Node left;//
Node right;
public Node(Byte data, int weight) {
this.data = data;
this.weight = weight;
}
@Override
public int compareTo(Node o) {
// 从小到大排序
return this.weight - o.weight;
}
public String toString() {
return "Node [data = " + data + " weight=" + weight + "]";
}
//前序遍历
public void preOrder() {
System.out.println(this);
if (this.left != null) {
this.left.preOrder();
}
if (this.right != null) {
this.right.preOrder();
}
}
}
给你一个数列 (7, 3, 10, 12, 5, 1, 9), 要求能够高效的完成对数据的查询和添加
使用数组
数组未排序, 优点: 直接在数组尾添加, 速度快。 缺点: 查找速度慢
数组排序, 优点: 可以使用二分查找, 查找速度快, 缺点: 为了保证数组有序, 在添加新数据时, 找到插入位置后, 后面的数据需整体移动, 速度慢。
使用链式存储-链表
不管链表是否有序, 查找速度都慢, 添加数据速度比数组快, 不需要数据整体移动。
使用二叉排序树
二叉排序树: BST: (Binary Sort(Search) Tree), 对于二叉排序树的任何一个非叶子节点, 要求左子节点的值比当前节点的值小, 右子节点的值比当前节点的值大。
特别说明: 如果有相同的值, 可以将该节点放在左子节点或右子节点
比如针对前面的数据 (7, 3, 10, 12, 5, 1, 9) , 对应的二叉排序树为:
一个数组创建成对应的二叉排序树, 并使用中序遍历二叉排序树
二叉排序树的删除情况比较复杂, 有下面三种情况需要考虑
删除叶子节点 (比如: 2, 5, 9, 12)
删除只有一颗子树的节点 (比如: 1)
删除有两颗子树的节点. (比如: 7, 3, 10 )
操作的思路分析
//对删除结点的各种情况的思路分析:
第一种情况:
删除叶子节点 (比如: 2, 5, 9, 12)
思路
(1) 需求先去找到要删除的结点 targetNode
(2) 找到 targetNode 的 父结点 parent
(3) 确定 targetNode 是 parent 的左子结点 还是右子结点
(4) 根据前面的情况来对应删除
左子结点 parent.left = null
右子结点 parent.right = null;
第二种情况: 删除只有一颗子树的节点 比如 1
思路
(1) 需求先去找到要删除的结点 targetNode
(2) 找到 targetNode 的 父结点 parent
(3) 确定 targetNode 的子结点是左子结点还是右子结点
(4) targetNode 是 parent 的左子结点还是右子结点
(5) 如果 targetNode 有左子结点
5.1 如果 targetNode 是 parent 的左子结点
parent.left = targetNode.left;
5.2 如果 targetNode 是 parent 的右子结点
parent.right = targetNode.left;
(6) 如果 targetNode 有右子结点
6.1 如果 targetNode 是 parent 的左子结点
parent.left = targetNode.right;
6.2 如果 targetNode 是 parent 的右子结点
parent.right = targetNode.right
情况三 : 删除有两颗子树的节点. (比如: 7, 3, 10 )
思路
(1) 需求先去找到要删除的结点 targetNode
(2) 找到 targetNode 的 父结点 parent
(3) 从 targetNode 的右子树找到最小的结点
(4) 用一个临时变量, 将 最小结点的值保存 temp = 11
(5) 删除该最小结点
(6) targetNode.value = temp
public class BinarySortTreeDemo {
public static void main(String[] args) {
int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
BinarySortTree binarySortTree = new BinarySortTree();
//循环的添加结点到二叉排序树
for (int i = 0; i < arr.length; i++) {
binarySortTree.add(new Node(arr[i]));
}
//中序遍历二叉排序树
System.out.println("中序遍历二叉排序树~");
binarySortTree.infixOrder(); // 1, 3, 5, 7, 9, 10, 12
//测试一下删除叶子结点
binarySortTree.delNode(12);
binarySortTree.delNode(5);
binarySortTree.delNode(10);
binarySortTree.delNode(2);
binarySortTree.delNode(3);
binarySortTree.delNode(9);
binarySortTree.delNode(1);
binarySortTree.delNode(7);
System.out.println("root=" + binarySortTree.getRoot());
System.out.println("删除结点后");
binarySortTree.infixOrder();
}
}
//创建二叉排序树
class BinarySortTree {
private Node root;
public Node getRoot() {
return root;
}
//查找要删除的结点
public Node search(int value) {
if (root == null) {
return null;
} else {
return root.search(value);
}
}
//查找父结点
public Node searchParent(int value) {
if (root == null) {
return null;
} else {
return root.searchParent(value);
}
}
//编写方法:
//1. 返回的 以node 为根结点的二叉排序树的最小结点的值
//2. 删除node 为根结点的二叉排序树的最小结点
/**
* @param node 传入的结点(当做二叉排序树的根结点)
* @return 返回的 以node 为根结点的二叉排序树的最小结点的值
*/
public int delRightTreeMin(Node node) {
Node target = node;
//循环的查找左子节点,就会找到最小值
while (target.left != null) {
target = target.left;
}
//这时 target就指向了最小结点
//删除最小结点
delNode(target.value);
return target.value;
}
//删除结点
public void delNode(int value) {
if (root == null) {
return;
} else {
//1.需求先去找到要删除的结点 targetNode
Node targetNode = search(value);
//如果没有找到要删除的结点
if (targetNode == null) {
return;
}
//如果我们发现当前这颗二叉排序树只有一个结点
if (root.left == null && root.right == null) {
root = null;
return;
}
//去找到targetNode的父结点
Node parent = searchParent(value);
//如果要删除的结点是叶子结点
if (targetNode.left == null && targetNode.right == null) {
//判断targetNode 是父结点的左子结点,还是右子结点
if (parent.left != null && parent.left.value == value) { //是左子结点
parent.left = null;
} else if (parent.right != null && parent.right.value == value) {//是由子结点
parent.right = null;
}
} else if (targetNode.left != null && targetNode.right != null) { //删除有两颗子树的节点
int minVal = delRightTreeMin(targetNode.right);
targetNode.value = minVal;
} else { // 删除只有一颗子树的结点
//如果要删除的结点有左子结点
if (targetNode.left != null) {
if (parent != null) {
//如果 targetNode 是 parent 的左子结点
if (parent.left.value == value) {
parent.left = targetNode.left;
} else { // targetNode 是 parent 的右子结点
parent.right = targetNode.left;
}
} else {
root = targetNode.left;
}
} else { //如果要删除的结点有右子结点
if (parent != null) {
//如果 targetNode 是 parent 的左子结点
if (parent.left.value == value) {
parent.left = targetNode.right;
} else { //如果 targetNode 是 parent 的右子结点
parent.right = targetNode.right;
}
} else {
root = targetNode.right;
}
}
}
}
}
//添加结点的方法
public void add(Node node) {
if (root == null) {
root = node;//如果root为空则直接让root指向node
} else {
root.add(node);
}
}
//中序遍历
public void infixOrder() {
if (root != null) {
root.infixOrder();
} else {
System.out.println("二叉排序树为空,不能遍历");
}
}
}
//创建Node结点
class Node {
int value;
Node left;
Node right;
public Node(int value) {
this.value = value;
}
//查找要删除的结点
/**
* @param value 希望删除的结点的值
* @return 如果找到返回该结点,否则返回null
*/
public Node search(int value) {
if (value == this.value) { //找到就是该结点
return this;
} else if (value < this.value) {//如果查找的值小于当前结点,向左子树递归查找
//如果左子结点为空
if (this.left == null) {
return null;
}
return this.left.search(value);
} else { //如果查找的值不小于当前结点,向右子树递归查找
if (this.right == null) {
return null;
}
return this.right.search(value);
}
}
//查找要删除结点的父结点
/**
* @param value 要找到的结点的值
* @return 返回的是要删除的结点的父结点,如果没有就返回null
*/
public Node searchParent(int value) {
//如果当前结点就是要删除的结点的父结点,就返回
if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {
return this;
} else {
//如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
if (value < this.value && this.left != null) {
return this.left.searchParent(value); //向左子树递归查找
} else if (value >= this.value && this.right != null) {
return this.right.searchParent(value); //向右子树递归查找
} else {
return null; // 没有找到父结点
}
}
}
@Override
public String toString() {
return "Node [value=" + value + "]";
}
//添加结点的方法
//递归的形式添加结点,注意需要满足二叉排序树的要求
public void add(Node node) {
if (node == null) {
return;
}
//判断传入的结点的值,和当前子树的根结点的值关系
if (node.value < this.value) {
//如果当前结点左子结点为null
if (this.left == null) {
this.left = node;
} else {
//递归的向左子树添加
this.left.add(node);
}
} else { //添加的结点的值大于 当前结点的值
if (this.right == null) {
this.right = node;
} else {
//递归的向右子树添加
this.right.add(node);
}
}
}
//中序遍历
public void infixOrder() {
if (this.left != null) {
this.left.infixOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.infixOrder();
}
}
}
给你一个数列{1,2,3,4,5,6}, 要求创建一颗二叉排序树(BST), 并分析问题所在
BST 存在的问题分析:
要求: 给你一个数列, 创建出对应的平衡二叉树.数列 {4,3,6,5,7,8}
要求: 给你一个数列, 创建出对应的平衡二叉树.数列 {10,12, 8, 9, 7, 6}
前面的两个数列, 进行单旋转(即一次旋转)就可以将非平衡二叉树转成平衡二叉树,但是在某些情况下, 单旋转不能完成平衡二叉树的转换。 比如数列
int[] arr = { 10, 11, 7, 6, 8, 9 }; 运行原来的代码可以看到, 并没有转成 AVL 树.
问题分析:
当符号右旋转的条件时(符合左旋转的条件时同理)
如果它的左子树的右子树高度大于它的左子树的高度
先对当前这个结点的左节点进行左旋转
在对当前结点进行右旋转的操作即可
public class AVLTreeDemo {
public static void main(String[] args) {
//int[] arr = {4,3,6,5,7,8};
//int[] arr = { 10, 12, 8, 9, 7, 6 };
int[] arr = {10, 11, 7, 6, 8, 9};
//创建一个 AVLTree对象
AVLTree avlTree = new AVLTree();
//添加结点
for (int i = 0; i < arr.length; i++) {
avlTree.add(new Node(arr[i]));
}
//遍历
System.out.println("中序遍历");
avlTree.infixOrder();
System.out.println("在平衡处理~~");
System.out.println("树的高度=" + avlTree.getRoot().height()); //3
System.out.println("树的左子树高度=" + avlTree.getRoot().leftHeight()); // 2
System.out.println("树的右子树高度=" + avlTree.getRoot().rightHeight()); // 2
System.out.println("当前的根结点=" + avlTree.getRoot());//8
}
}
// 创建AVLTree
class AVLTree {
private Node root;
public Node getRoot() {
return root;
}
// 查找要删除的结点
public Node search(int value) {
if (root == null) {
return null;
} else {
return root.search(value);
}
}
// 查找父结点
public Node searchParent(int value) {
if (root == null) {
return null;
} else {
return root.searchParent(value);
}
}
// 编写方法:
// 1. 返回的 以node 为根结点的二叉排序树的最小结点的值
// 2. 删除node 为根结点的二叉排序树的最小结点
/**
* @param node 传入的结点(当做二叉排序树的根结点)
* @return 返回的 以node 为根结点的二叉排序树的最小结点的值
*/
public int delRightTreeMin(Node node) {
Node target = node;
// 循环的查找左子节点,就会找到最小值
while (target.left != null) {
target = target.left;
}
// 这时 target就指向了最小结点
// 删除最小结点
delNode(target.value);
return target.value;
}
// 删除结点
public void delNode(int value) {
if (root == null) {
return;
} else {
// 1.需求先去找到要删除的结点 targetNode
Node targetNode = search(value);
// 如果没有找到要删除的结点
if (targetNode == null) {
return;
}
// 如果我们发现当前这颗二叉排序树只有一个结点
if (root.left == null && root.right == null) {
root = null;
return;
}
// 去找到targetNode的父结点
Node parent = searchParent(value);
// 如果要删除的结点是叶子结点
if (targetNode.left == null && targetNode.right == null) {
// 判断targetNode 是父结点的左子结点,还是右子结点
if (parent.left != null && parent.left.value == value) { // 是左子结点
parent.left = null;
} else if (parent.right != null && parent.right.value == value) {// 是由子结点
parent.right = null;
}
} else if (targetNode.left != null && targetNode.right != null) { // 删除有两颗子树的节点
int minVal = delRightTreeMin(targetNode.right);
targetNode.value = minVal;
} else { // 删除只有一颗子树的结点
// 如果要删除的结点有左子结点
if (targetNode.left != null) {
if (parent != null) {
// 如果 targetNode 是 parent 的左子结点
if (parent.left.value == value) {
parent.left = targetNode.left;
} else { // targetNode 是 parent 的右子结点
parent.right = targetNode.left;
}
} else {
root = targetNode.left;
}
} else { // 如果要删除的结点有右子结点
if (parent != null) {
// 如果 targetNode 是 parent 的左子结点
if (parent.left.value == value) {
parent.left = targetNode.right;
} else { // 如果 targetNode 是 parent 的右子结点
parent.right = targetNode.right;
}
} else {
root = targetNode.right;
}
}
}
}
}
// 添加结点的方法
public void add(Node node) {
if (root == null) {
root = node;// 如果root为空则直接让root指向node
} else {
root.add(node);
}
}
// 中序遍历
public void infixOrder() {
if (root != null) {
root.infixOrder();
} else {
System.out.println("二叉排序树为空,不能遍历");
}
}
}
// 创建Node结点
class Node {
int value;
Node left;
Node right;
public Node(int value) {
this.value = value;
}
// 返回左子树的高度
public int leftHeight() {
if (left == null) {
return 0;
}
return left.height();
}
// 返回右子树的高度
public int rightHeight() {
if (right == null) {
return 0;
}
return right.height();
}
// 返回 以该结点为根结点的树的高度
public int height() {
return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1;
}
//左旋转方法
private void leftRotate() {
//创建新的结点,以当前根结点的值
Node newNode = new Node(value);
//把新的结点的左子树设置成当前结点的左子树
newNode.left = left;
//把新的结点的右子树设置成带你过去结点的右子树的左子树
newNode.right = right.left;
//把当前结点的值替换成右子结点的值
value = right.value;
//把当前结点的右子树设置成当前结点右子树的右子树
right = right.right;
//把当前结点的左子树(左子结点)设置成新的结点
left = newNode;
}
//右旋转
private void rightRotate() {
Node newNode = new Node(value);
newNode.right = right;
newNode.left = left.right;
value = left.value;
left = left.left;
right = newNode;
}
// 查找要删除的结点
/**
* @param value 希望删除的结点的值
* @return 如果找到返回该结点,否则返回null
*/
public Node search(int value) {
if (value == this.value) { // 找到就是该结点
return this;
} else if (value < this.value) {// 如果查找的值小于当前结点,向左子树递归查找
// 如果左子结点为空
if (this.left == null) {
return null;
}
return this.left.search(value);
} else { // 如果查找的值不小于当前结点,向右子树递归查找
if (this.right == null) {
return null;
}
return this.right.search(value);
}
}
// 查找要删除结点的父结点
/**
* @param value 要找到的结点的值
* @return 返回的是要删除的结点的父结点,如果没有就返回null
*/
public Node searchParent(int value) {
// 如果当前结点就是要删除的结点的父结点,就返回
if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {
return this;
} else {
// 如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
if (value < this.value && this.left != null) {
return this.left.searchParent(value); // 向左子树递归查找
} else if (value >= this.value && this.right != null) {
return this.right.searchParent(value); // 向右子树递归查找
} else {
return null; // 没有找到父结点
}
}
}
@Override
public String toString() {
return "Node [value=" + value + "]";
}
// 添加结点的方法
// 递归的形式添加结点,注意需要满足二叉排序树的要求
public void add(Node node) {
if (node == null) {
return;
}
// 判断传入的结点的值,和当前子树的根结点的值关系
if (node.value < this.value) {
// 如果当前结点左子结点为null
if (this.left == null) {
this.left = node;
} else {
// 递归的向左子树添加
this.left.add(node);
}
} else { // 添加的结点的值大于 当前结点的值
if (this.right == null) {
this.right = node;
} else {
// 递归的向右子树添加
this.right.add(node);
}
}
//当添加完一个结点后,如果: (右子树的高度-左子树的高度) > 1 , 左旋转
if (rightHeight() - leftHeight() > 1) {
//如果它的右子树的左子树的高度大于它的右子树的右子树的高度
if (right != null && right.leftHeight() > right.rightHeight()) {
//先对右子结点进行右旋转
right.rightRotate();
//然后在对当前结点进行左旋转
leftRotate(); //左旋转..
} else {
//直接进行左旋转即可
leftRotate();
}
return; //必须要!!!
}
//当添加完一个结点后,如果 (左子树的高度 - 右子树的高度) > 1, 右旋转
if (leftHeight() - rightHeight() > 1) {
//如果它的左子树的右子树高度大于它的左子树的高度
if (left != null && left.rightHeight() > left.leftHeight()) {
//先对当前结点的左结点(左子树)->左旋转
left.leftRotate();
//再对当前结点进行右旋转
rightRotate();
} else {
//直接进行右旋转即可
rightRotate();
}
}
}
// 中序遍历
public void infixOrder() {
if (this.left != null) {
this.left.infixOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.infixOrder();
}
}
}
原文:https://www.cnblogs.com/huangwenjie/p/13660756.html