首页 > 其他 > 详细

实对称矩阵

时间:2020-09-13 21:32:15      阅读:55      评论:0      收藏:0      [点我收藏+]

实对称矩阵有着很好的性质,如果用一句话概括,就是: n阶实对称矩阵必有n个两两正交的实特征向量。

百度百科对实对称矩阵的性质描述如下:

1.实对称矩阵A的不同特征值对应的特征向量是正交的。

2.实对称矩阵A的特征值都是实数,特征向量都是实向量。

3.n阶实对称矩阵A必可相似对角化,且相似对角阵上的元素即为矩阵本身特征值。

4.若A具有k重特征值\(\lambda_0\),则\(\lambda_0\)必对应k个线性无关的特征向量,或者说秩 \(r(\lambda_0E-A)\) 必为n-k,其中E为单位矩阵。

5.实对称矩阵A一定可正交相似对角化。

实对称矩阵

原文:https://www.cnblogs.com/bill-h/p/13663079.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!