数学上,n阶的法里数列是0和1之间最简分数的数列,由小至大排列,每个分数的分母不大于n
\(F(1)=\{\frac{0}{1},\frac{1}{1}\}\)
\(F(2)=\{\frac{0}{1},\frac{1}{2},\frac{1}{1}\}\)
\(F(3)=\{\frac{0}{1},\frac{1}{3},\frac{1}{2},\frac{2}{3},\frac{1}{1}\}\)
\(F(4)=\{\frac{0}{1},\frac{1}{4},\frac{1}{3},\frac{1}{2},\frac{2}{3},\frac{3}{4},\frac{1}{1}\}\)
\(F(4)=\{\frac{0}{1},\frac{1}{5},\frac{1}{4},\frac{1}{3},\frac{2}{5},\frac{1}{2},\frac{3}{5},\frac{2}{3},\frac{3}{4},\frac{4}{5},\frac{1}{1}\}\)
n阶的法里数列包\(F_n\)包含了较低阶法里数列的全部项,特别是包含了\(F_{n-1}\)的全部项以及与\(n\)互质的每个数的相应分数,所以\(F_n\)和\(F_{n-1}\)的长度的关系,可以用欧拉函数\(\varphi(n)\)描述:
\(|F_n|=|F_{n-1}|+\varphi(n)\)
由\(|F_1|=2\)可得
\(|F_n|=1+\sum\limits_{i=1}^{n}\varphi(i)\)
\(|F_n|\)的渐进行为是:
\(|F_n|=\frac{3n^2}{\pi^2}\)
若\(\frac{a}{b}\)与\(\frac{c}{d}\)是法里数列的邻项,且\(\frac{a}{b}<\frac{c}{d}\),那么他们之差是\(\frac{1}{bd}\),即\(bc-ad=1\)
逆命题同样成立,若\(bc-ad=1\),其中\(a,b,c\)和\(d\)为正整数,及有\(a<b,c<d\)则\(\frac{a}{b}\)与\(\frac{c}{d}\)在阶为\(max(d,b)\)的法里数列中是邻项?
原文:https://www.cnblogs.com/graytido/p/13689669.html