所谓“\(k\) 短路”问题,即给定一张 \(n\) 个点,\(m\) 条边的有向图,给定起点 \(s\) 和终点 \(t\),求出所有 \(s\to t\) 的简单路径中第 \(k\) 短的。而且一般来说 \(n, m, k\) 的范围在 \(10^5\) 级别,于是爆搜或者 \(k\) 次最短路这样的算法我们不做讨论。
本文将介绍求解 \(k\) 短路问题的两种经典方法:\(A^*\) 算法 以及 可持久化可并堆做法。
很显然地,我们有一个暴力的 Bfs 做法:第 \(k\) 次搜到点 \(t\) 的就是所求。然而这样太慢了,我们考虑优化方案。
对于搜索中的一个状态 \(x\),令 \(g(x)\) 为当前状态下该点到 \(s\) 的路径长。
朴素的 Bfs 就是直接暴力地拓展,但我们可以设计一种方案,使得 相对接近终点的状态优先拓展。
A* 算法中,我们会引入一个函数 \(f(x)\),表示 \(x\) 的 估值,那么函数 \(f\) 也被称为 估价函数。函数 \(f\) 的计算有一个通式:
其中 \(g(x)\) 代表 状态 \(x\) 当前的代价,\(h(x)\) 表示 状态 \(x\) 到终点状态在最佳状态下的代价。一般而言,\(h\) 的计算方式由自己决定,但需要根据以下原则:
在搜索时,我们优先拓展 \(f(x)\) 值最小的状态。一般会选用 堆(优先队列) 实现。
所幸,\(h(x)\) 的定义在本题还算比较显然——到终点 \(t\) 的最短距离。而且可以发现 \(h\) 已经是最优的了。
于是算法就不难了:
struct statu { // 定义状态
int pos; double g, f;
bool operator < (const statu& rhs) const {
return f > rhs.f; // 为了方便比较将 f 值也记下来
}
};
int aStar(int k) {
priority_queue<statu> pq;
pq.push(statu{1, 0, dist[s]}); // 初始状态
while (!pq.empty()) {
statu x = pq.top(); pq.pop(); // 抽出当前最优状态
if (x.pos == t) // 到终点
if (--k == 0) return x.g; // 如果这是第 k 条,返回
for (auto e : G[x.pos])
pq.push(statu{ // 拓展状态
e.to, x.g + e.val,
x.g + e.val + dist[e.to]
});
}
return -1; // 没有第 k 条
}
随机数据这个算法跑的很快,但如果图是一个 \(n\) 元环时,复杂度会达到 \(O(nk\log n)\) 级别。
所谓最短路树,就是从根通过树边到每个点的路径长和原图上的最短路径长相同,那么这样的树就是最短路树。
最短路树可以通过求最短路的算法(Dijkstra/Spfa)求出。
这里我们选定终点 \(t\) 为根,在反图上求出最短路树 \(T\)。那么每个点通过树边都是到 \(t\) 点的路径最短路。
对于一条 \(s\to t\) 的路径 \(p\),我们选取其中的 非树边,作为一个集合,记为 \(side(p)\)。即 \(side(p) = p \setminus (p \cap T)\)。
为方便说明,我们引入一些记号:
\(side(p)\) 有如下性质:
根据性质 1,可以发现答案就是 \(dist(s) + \sum\limits_{e\in side(p)}\delta(e)\) 的第 \(k\) 小值。
那么我们只要不断构造出这 \(k\) 个 \(side(p)\) 即可。
根据第二个性质,我们可以对一个现有的 \(side(p)\) 推出另一个新的 \(side(q)\):
\(side(p)\) 最尾端的边为 \(e\),令 \(u = front(e), v = back(e)\)。那么有两种构造策略:
顺带一提,这两个方法分别对应性质 2 的两种情况。
于是我们实现了通过现有的一条 \(s\to t\) 的路径得出另一条更长的路径。如果我们可以通过某种手段达到在可以承受的时间内完成一次构造,那么只要每次选取一个最小的 \(side(p)\),重复执行构造,直至选出第 \(k\) 个即可。这个 \(side(p)\) 的集合可以用小根堆维护。
快速构造 \(side(p)\) 需要我们在每个节点维护一个 与之相连的所有非树边和祖先出去的边的最小边;
很自然的想到堆,堆中存储路径的尾边对应的堆节点以及路径长度。
如果建出了每个节点的堆,那么上述的构造策略可以转化为(设当前堆节点为 \(x\)):\(x\) 的左右儿子替换掉当前的堆节点,或者 \(x\) 对应边的尾端点对应堆的根。
那么我们实现了一次 \(O(\log k)\) 的转移(维护 \(side(p)\) 的小根堆的大小为 \(O(k)\))。
堆的话,可以通过最短路树从祖先向叶子的方向合并构造。
但很显然用一般的二叉堆是很难避免 MLE 的结果的。不过对于可并堆我们可以考虑一下这个问题:可并堆之所以有问题是因为 每次合并都需要保留前两个堆的信息。
于是要解决这个问题,就得让信息保留。而整个堆复制是不现实的,只能 共用一些节点。那么显而易见我们需要——
一般我们用 可持久化左偏树 实现,这样时空复杂度都是线性对数级别的。
其实会左偏树的话这玩意也不难写。可以参考 OI-Wiki 可持久化可并堆 标签页学习。
好像一切都明朗了。来归纳一下算法的步骤吧:
P2483 【模板】k短路 / [SDOI2010]魔法猪学院 代码
#include <algorithm>
#include <cstring>
#include <iostream>
#include <queue>
#include <vector>
using namespace std;
const int N = 5e4 + 5;
const int M = 2e5 + 5;
const double inf = 1e16;
const double eps = 1e-8;
struct Graph {
struct Edge {
int to, nxt;
double len;
} e[M];
int head[N], ecnt = 0;
Graph() { memset(head, -1, sizeof(head)), ecnt = 0; }
inline void insert(int u, int v, double w) {
e[ecnt] = Edge{v, head[u], w}; head[u] = ecnt++;
}
inline int nxt(int i) { return e[i].nxt; }
inline int to(int i) { return e[i].to; }
inline double len(int i) { return e[i].len; }
} G, R;
int n, m;
double E;
int fa[N];
double dist[N];
bool book[N];
struct vtx {
int pos; double dist;
bool operator < (const vtx& rhs) const {
return dist > rhs.dist;
}
};
priority_queue<vtx> pq;
void Dijkstra() {
fill(dist + 1, dist + 1 + n, inf);
pq.push(vtx{n, dist[n] = 0.0});
while (!pq.empty()) {
int x = pq.top().pos; pq.pop();
if (book[x]) continue;
book[x] = true;
for (int i = R.head[x]; ~i; i = R.nxt(i)) {
int y = R.to(i); double l = R.len(i);
if (dist[y] > dist[x] + l) {
dist[y] = dist[x] + l;
fa[y] = i;
pq.push(vtx{y, dist[y]});
}
}
}
}
namespace LefT {
struct lef {
int ch[2], dist;
int end; double delta;
} tr[N << 5];
int total = 0;
inline int create(double d, int e) {
int x = ++total;
tr[x] = lef{{0, 0}, 1, e, d};
return x;
}
inline int copy(int x) {
return tr[++total] = tr[x], total;
}
int merge(int x, int y) {
if (!x || !y) return x | y;
if (tr[x].delta > tr[y].delta) swap(x, y);
int z = copy(x);
tr[z].ch[1] = merge(tr[x].ch[1], y);
if (tr[tr[z].ch[0]].dist < tr[tr[z].ch[1]].dist)
swap(tr[z].ch[0], tr[z].ch[1]);
tr[z].dist = tr[tr[z].ch[1]].dist + 1;
return z;
}
};
int root[N];
void initLefTr() {
using namespace LefT;
for (int i = 1; i <= n; i++)
pq.push(vtx{i, dist[i]});
tr[0].dist = -1;
while (!pq.empty()) {
int x = pq.top().pos; pq.pop();
for (int i = G.head[x]; ~i; i = G.nxt(i)) if (fa[x] != i)
root[x] = merge(root[x], create(G.len(i) + dist[G.to(i)] - dist[x], G.to(i)));
root[x] = merge(root[x], root[G.to(fa[x])]);
}
}
int calc() {
using namespace LefT;
int ret = 0;
if (dist[1] > E) return 0;
E -= dist[1], ++ret;
if (!root[1]) return ret;
pq.push(vtx{root[1], tr[root[1]].delta});
while (!pq.empty()) {
int x = pq.top().pos;
double d = pq.top().dist;
pq.pop();
if (dist[1] + d > E) break;
++ret, E -= dist[1] + d;
for (int* c = tr[x].ch, s = 2; s; --s, ++c) if (*c)
pq.push(vtx{*c, d - tr[x].delta + tr[*c].delta});
if (root[tr[x].end])
pq.push(vtx{root[tr[x].end], d + tr[root[tr[x].end]].delta});
}
return ret;
}
signed main() {
ios::sync_with_stdio(false);
cin >> n >> m >> E;
for (int i = 1; i <= m; i++) {
int u, v; double w;
cin >> u >> v >> w;
if (u == n) continue;
G.insert(u, v, w);
R.insert(v, u, w);
}
Dijkstra(), initLefTr();
cout << calc() << endl;
return 0;
}
\(O(n\log n+k\log k)\) 时间,\(O(n\log n)\) 空间。设 \(n, m\) 同阶。
两个算法各有优缺点:
两个都建议读者掌握,以便在不同情况下有更多的选择。
原文:https://www.cnblogs.com/-Wallace-/p/13693289.html