loc函数:通过行索引 "Index" 中的具体值来取行数据(如取"Index"为"A"的行)
iloc函数:通过行号来取行数据(如取第二行的数据)
本文给出loc、iloc常见的五种用法,并附上详细代码。
import numpy as np
import pandas as pd
#创建一个Dataframe
data=pd.DataFrame(np.arange(16).reshape(4,4),index=list(‘abcd‘),columns=list(‘ABCD‘))
In[1]: data
Out[1]:
A B C D
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
#取索引为‘a‘的行
In[2]: data.loc[‘a‘]
Out[2]:
A 0
B 1
C 2
D 3
#取第一行数据,索引为‘a‘的行就是第一行,所以结果相同
In[3]: data.iloc[0]
Out[3]:
A 0
B 1
C 2
D 3
In[4]:data.loc[:,[‘A‘]] #取‘A‘列所有行,多取几列格式为 data.loc[:,[‘A‘,‘B‘]]
Out[4]:
A
a 0
b 4
c 8
d 12
In[5]:data.iloc[:,[0]] #取第0列所有行,多取几列格式为 data.iloc[:,[0,1]]
Out[5]:
A
a 0
b 4
c 8
d 12
In[6]:data.loc[[‘a‘,‘b‘],[‘A‘,‘B‘]] #提取index为‘a‘,‘b‘,列名为‘A‘,‘B‘中的数据
Out[6]:
A B
a 0 1
b 4 5
In[7]:data.iloc[[0,1],[0,1]] #提取第0、1行,第0、1列中的数据
Out[7]:
A B
a 0 1
b 4 5
In[8]:data.loc[:,:] #取A,B,C,D列的所有行
Out[8]:
A B C D
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
In[9]:data.iloc[:,:] #取第0,1,2,3列的所有行
Out[9]:
A B C D
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
In[10]: data.loc[data[‘A‘]==0] #提取data数据(筛选条件: A列中数字为0所在的行数据)
Out[10]:
A B C D
a 0 1 2 3
In[11]: data.loc[(data[‘A‘]==0)&(data[‘B‘]==2)] #提取data数据(多个筛选条件)
Out[11]:
A B C D
a 0 1 2 3
同时,以下几种写法也可提取数据所在的行,与第五种用法类似,仅作补充。
In[12]: data[data[‘A‘]==0] #dataframe用法
In[13]: data[data[‘A‘].isin([0])] #isin函数
In[14]: data[(data[‘A‘]==0)&(data[‘B‘]==2)] #dataframe用法
In[15]: data[(data[‘A‘].isin([0]))&(data[‘B‘].isin([2]))] #isin函数
Out[15]:
A B C D
a 0 1 2 3
利用loc函数的时候,当index相同时,会将相同的Index全部提取出来,优点是:如果index是人名,数据框为所有人的 数据,那么我可以将某个人的多条数据提取出来分析;缺点是:如果index不具有特定意义,而且重复,那么提取的数据需要进一步处理,可 用.reset_index()函数重置index
原文:https://www.cnblogs.com/Summer-skr--blog/p/13707213.html