Given an integer array of size n, find all elements that appear more than ? n/3 ?
times.
Note: The algorithm should run in linear time and in O(1) space.
Example 1:
Input: [3,2,3]
Output: [3]
Example 2:
Input: [1,1,1,3,3,2,2,2]
Output: [1,2]
找到数组中所有出现次数大于? n/3 ?
的元素。
限制时间为O(N)、空间为O(1),因此不能用Hash或者排序。使用 169. Majority Element (E) 中提到的摩尔投票法 Boyer-Moore Majority Vote。求所有出现次数大于? n/3 ?
的元素,用反证法很容易证明这种元素最多只有两个,所以可以先用摩尔投票法获得两个候选元素,再重新遍历数组统计候选元素出现的次数,将满足条件的加入到结果集中。
class Solution {
public List<Integer> majorityElement(int[] nums) {
List<Integer> ans = new ArrayList<>();
int a = 0, b = 0;
int countA = 0, countB = 0;
for (int i = 0; i < nums.length; i++) {
if (nums[i] == a) {
countA++;
} else if (nums[i] == b) {
countB++;
} else if (countA == 0) {
a = nums[i];
countA = 1;
} else if (countB == 0) {
b = nums[i];
countB = 1;
} else {
countA--;
countB--;
}
}
countA = 0;
countB = 0;
for (int i = 0; i < nums.length; i++) {
if (nums[i] == a) {
countA++;
} else if (nums[i] == b) {
countB++;
}
}
if (countA > nums.length / 3) {
ans.add(a);
}
if (countB > nums.length / 3) {
ans.add(b);
}
return ans;
}
}
/**
* @param {number[]} nums
* @return {number[]}
*/
var majorityElement = function (nums) {
let ans = []
let a = 0, b = 0, countA = 0, countB = 0
for (let num of nums) {
if (num === a) {
countA++
} else if (num === b) {
countB++
} else if (countA === 0) {
a = num
countA = 1
} else if (countB === 0) {
b = num
countB = 1
} else {
countA--
countB--
}
}
countA = 0, countB = 0
for (let num of nums) {
if (num === a) {
countA++
} else if (num === b) {
countB++
}
}
if (countA > Math.trunc(nums.length / 3)) ans.push(a)
if (countB > Math.trunc(nums.length / 3)) ans.push(b)
return ans
}
原文:https://www.cnblogs.com/mapoos/p/13715103.html