学习目的:
上一篇实现了中断方式的按键驱动程序,当应用程序去读取按键值时,如果此时无按键按下或松开,应用程序将进入休眠。休眠过程虽然不占用CPU的资源,但如果无按键按下或松开情况发生,应用程序将永远不会被唤醒,那么程序中其他的事情就不能被处理,很显然这样是不合理的。引入poll机制,便能解决这种情况。当应用程序中调用poll函数,可以设置等待超时时间,如果等待超过了设置超时时间,程序会立即返回,继续执行其他操作。
1、内核中poll机制实现
我们知道应用程序通过调用C库中实现的open、read等系统调用进入内核,调用内核中对应的sys_open、sys_read函数。与此类似,poll最终也会调用到内核中的sys_poll,分析时先从sys_poll开始,从上往下看,层层递进,找出其他关系。
1.1 sys_poll函数
asmlinkage long sys_poll(struct pollfd __user *ufds, unsigned int nfds, long timeout_msecs) { s64 timeout_jiffies; if (timeout_msecs > 0) { #if HZ > 1000 /* We can only overflow if HZ > 1000 */ if (timeout_msecs / 1000 > (s64)0x7fffffffffffffffULL / (s64)HZ) timeout_jiffies = -1; else #endif timeout_jiffies = msecs_to_jiffies(timeout_msecs); } else { /* Infinite (< 0) or no (0) timeout */ timeout_jiffies = timeout_msecs; } return do_sys_poll(ufds, nfds, &timeout_jiffies); }
sys_poll位于fs/select.c文件中,它对超时时间进行处理,最后调用do_sys_poll
1.2 do_sys_poll函数
int do_sys_poll(struct pollfd __user *ufds, unsigned int nfds, s64 *timeout) { ... poll_initwait(&table); ... fdcount = do_poll(nfds, head, &table, timeout); ... }
poll_initwait函数初始化一个poll_wqueues类型结构体,
poll_initwait>>init_poll_funcptr(&pwq->pt, __pollwait)>>pt->qproc = qproc; 即table.pt.proc = __pollwait
1.3 do_poll函数
static int do_poll(unsigned int nfds, struct poll_list *list, struct poll_wqueues *wait, s64 *timeout) { ... for (;;) {----------------------------------------------------------->① ... if (do_pollfd(pfd, pt)) {-------------------------------->② count++; pt = NULL; } } ... if (count || !*timeout || signal_pending(current)) break; count = wait->error; if (count) break; if (*timeout < 0) { /* Wait indefinitely */ __timeout = MAX_SCHEDULE_TIMEOUT; } else if (unlikely(*timeout >= (s64)MAX_SCHEDULE_TIMEOUT-1)) { __timeout = MAX_SCHEDULE_TIMEOUT - 1; *timeout -= __timeout; } else { __timeout = *timeout; *timeout = 0; } __timeout = schedule_timeout(__timeout);------------------------>③ if (*timeout >= 0) *timeout += __timeout; } __set_current_state(TASK_RUNNING); return count; }
①处可看出该函数内部是一个循环,他的退出条件为:
a. do_pollfd返回非0,count非零、等待超时、有信号等待处理
b. 等待出现错误
②处do_pollfd是该函数中的核心,后面再分析
③处让本进程进入休眠,应用程序执行poll调用后,如果①②的条件不满足,进程就会进入休眠。那么,谁唤醒呢?除了休眠到指定时间被系统唤醒外,还可以被驱动程序唤醒──记住这点,这就是为什么驱动的poll里要调用poll_wait的原因,后面分析。
1.4 do_pollfd函数
static inline unsigned int do_pollfd(struct pollfd *pollfd, poll_table *pwait) { ... if (file->f_op && file->f_op->poll) mask = file->f_op->poll(file, pwait); ... }
调用驱动程序中file_operations结构体中填充的poll函数
1.4 驱动程序
驱动程序里与poll相关的地方有两处:一是构造file_operation结构时,要定义自己的poll函数。二是通过poll_wait来调用上面说到的__pollwait函数,pollwait的代码如下:
static inline void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p) { if (p && wait_address) p->qproc(filp, wait_address, p); }
p->qproc(filp, wait_address, p),即table.pt.proc = __pollwait,最终调用到__pollwait函数
static void __pollwait(struct file *filp, wait_queue_head_t *wait_address, poll_table *p) { struct poll_table_entry *entry = poll_get_entry(p); if (!entry) return; get_file(filp); entry->filp = filp; entry->wait_address = wait_address; init_waitqueue_entry(&entry->wait, current); add_wait_queue(wait_address, &entry->wait); }
__pollwait将当前的应用程序的进程挂到应用程序中定义的等待列中
执行到驱动程序的poll_wait函数时,进程并没有休眠,我们的驱动程序里实现的poll函数是不会引起休眠的。让进程进入休眠,是前面分析的do_sys_poll函数的③“__timeout = schedule_timeout(__timeout)”。
poll_wait只是把本进程挂入某个队列,应用程序调用poll > sys_poll > do_sys_poll > poll_initwait,do_poll > do_pollfd > 我们自己写的poll函数后,再调用schedule_timeout进入休眠。如果我们的驱动程序发现情况就绪,可以把这个队列上挂着的进程唤醒。可见,poll_wait的作用,只是为了让驱动程序能找到要唤醒的进程。即使不用poll_wait,我们的程序也有机会被唤醒:chedule_timeout(__timeout),只是要休眠__time_out这段时间。
现在来总结一下poll机制:
1. poll > sys_poll > do_sys_poll > poll_initwait,poll_initwait函数注册一下回调函数__pollwait,它就是我们的驱动程序执行poll_wait时,真正被调用的函数。
2. 接下来执行file->f_op->poll,即我们驱动程序里自己实现的poll函数
它会调用poll_wait把自己挂入某个队列,这个队列也是我们的驱动自己定义的;
它还判断一下设备是否就绪。
3. 如果设备未就绪,do_sys_poll里会让进程休眠一定时间
4. 进程被唤醒的条件有2:一是上面说的“一定时间”到了,二是被驱动程序唤醒。驱动程序发现条件就绪时,就把“某个队列”上挂着的进程唤醒,这个队列,就是前面通过poll_wait把本进程挂过去的队列。
5. 如果驱动程序没有去唤醒进程,那么chedule_timeout(__timeou)超时后,会重复2、3动作,直到应用程序的poll调用传入的时间到达。
2、引入poll中断驱动程序实现
在file_operations中填充button_drv_poll函数,调用poll_wait函数,将当前进程挂入到button_waittq队列中,当按键按下触发中断服务函数唤醒button_waitp队列中poll中引发的休眠进程,返回POLLIN,应用程序有数据可读。
测试应用程序使用poll函数,等待3s,如果3s内有按键按下,poll函数返回有数据可读,调用read函数读取按键值。若3s时间内没有按键按下,poll函数超时返回,应用程序中打因time out...提示
static unsigned button_drv_poll(struct file *file, poll_table *wait) { unsigned int mask = 0; poll_wait(file, &button_waitq, wait); // 不会立即休眠 if (event_trig) mask |= POLLIN | POLLRDNORM; return mask; }
完整驱动代码
#include <linux/module.h> #include <linux/kernel.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/irq.h> #include <asm/uaccess.h> #include <asm/irq.h> #include <asm/io.h> #include <plat/gpio-fns.h> #include <mach/gpio-nrs.h> #include <linux/interrupt.h> #include <linux/wait.h> #include <linux/sched.h> #include <linux/device.h> #include <linux/gpio.h> #include <linux/poll.h> #define BUTTON_NUMS 4 #define IRQT_BOTHEDGE IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING static int major; static int event_trig = 0; static unsigned char key_status; static volatile unsigned long *gpfcon = NULL; static volatile unsigned long *gpgcon = NULL; static volatile unsigned long *gpfdat = NULL; static volatile unsigned long *gpgdat = NULL; static struct class *button_drv_class; static struct class_device *button_drv_class_dev; static DECLARE_WAIT_QUEUE_HEAD(button_waitq); struct button_desc { int pin; int irq_type; unsigned long flags; char *name; int key_val; }; static struct button_desc btn_desc[BUTTON_NUMS] = { {S3C2410_GPF(0), IRQ_EINT0, IRQT_BOTHEDGE, "S2", 1}, {S3C2410_GPF(2), IRQ_EINT2, IRQT_BOTHEDGE, "S3", 2}, {S3C2410_GPG(3), IRQ_EINT11, IRQT_BOTHEDGE, "S4", 3}, {S3C2410_GPG(11), IRQ_EINT19, IRQT_BOTHEDGE, "S5", 4}, }; static int button_drv_open(struct inode *inode, struct file *file); static ssize_t button_drv_read(struct file *file, char __user *buf, size_t count, loff_t *ppos); static ssize_t button_drv_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos); static int button_drv_close(struct inode *inode, struct file *file); static unsigned button_drv_poll(struct file *file, poll_table *wait); struct file_operations button_drv_fileop = { .owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */ .open = button_drv_open, .read = button_drv_read, .write = button_drv_write, .release = button_drv_close, .poll = button_drv_poll, }; static irqreturn_t button_irq_handle(int irq, void *dev_id) { struct button_desc *pdesc = NULL; unsigned char pin_val; pdesc = (struct button_desc *)dev_id; pin_val = gpio_get_value(pdesc->pin); if(pin_val == 1) { key_status = pdesc->key_val | 0x80; } else { key_status = pdesc->key_val; } event_trig = 1; wake_up_interruptible(&button_waitq); return IRQ_RETVAL(IRQ_HANDLED); } static int button_drv_open(struct inode *inode, struct file *file) { int i; *gpfcon &= ~((0x3<<(0*2)) | (0x3<<(2*2))); *gpgcon &= ~((0x3<<(3*2)) | (0x3<<(11*2))); /* 注册中断处理函数 */ for(i = 0; i < BUTTON_NUMS; i++) request_irq(btn_desc[i].irq_type, button_irq_handle, btn_desc[i].flags, btn_desc[i].name, &btn_desc[i]); return 0; } static ssize_t button_drv_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { if(count != 1) return EINVAL; wait_event_interruptible(button_waitq, event_trig); if(copy_to_user(buf, &key_status, count)) return EFAULT; event_trig = 0; return 0; } static ssize_t button_drv_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { printk("button_drv_write\n"); return 0; } static int button_drv_close(struct inode *inode, struct file *file) { int i; for(i = 0; i < BUTTON_NUMS; i++) free_irq(btn_desc[i].irq_type, &btn_desc[i]); return 0; } static unsigned button_drv_poll(struct file *file, poll_table *wait) { unsigned int mask = 0; poll_wait(file, &button_waitq, wait); // 不会立即休眠 if (event_trig) mask |= POLLIN | POLLRDNORM; return mask; } static int button_drv_init(void) { major = register_chrdev(0, "button_light", &button_drv_fileop); button_drv_class = class_create(THIS_MODULE, "button_drv"); //button_drv_class_dev = class_device_create(button_drv_class, NULL, MKDEV(major, 0), NULL, "button"); /* /dev/button */ button_drv_class_dev = device_create(button_drv_class, NULL, MKDEV(major, 0), NULL, "button"); /* /dev/button */ gpfcon = (volatile unsigned long *)ioremap(0x56000050, 16); gpgcon = (volatile unsigned long *)ioremap(0x56000060, 16); gpfdat = gpfcon + 1; gpgdat = gpgcon + 1; return 0; } static void button_drv_exit(void) { unregister_chrdev(major, "button_drv"); //class_device_unregister(button_drv_class_dev); device_unregister(button_drv_class_dev); class_destroy(button_drv_class); iounmap(gpfcon); iounmap(gpgcon); } module_init(button_drv_init); module_exit(button_drv_exit); MODULE_LICENSE("GPL");
完成测试程序代码
#include <unistd.h> #include <sys/types.h> #include <sys/stat.h> #include <sys/fcntl.h> #include <stdlib.h> #include <stdio.h> #include <poll.h> int main(int argc, char **argv) { int fd, ret; unsigned char key_buf; struct pollfd fds; fd = open("/dev/button", O_RDWR); if(fd == -1) { printf("can‘t open...\n"); exit(EXIT_FAILURE); } fds.fd = fd; fds.events = POLLIN; while(1) { ret = poll(&fds, 1, 3000); if(ret > 0) { ret = read(fd, &key_buf, 1); if(ret < 0) { printf("read err...\n"); continue; } /* 判断有按键按下,打印按键信息 */ printf("key_val=0x%x\n", key_buf); } else if(ret == 0) { printf("time out...\n"); } else if(ret == -1) { printf("error...\n"); } } exit(EXIT_SUCCESS); }
测试效果
原文:https://www.cnblogs.com/053179hu/p/13442759.html