首页 > 其他 > 详细

Halcon学习:缺陷检测

时间:2020-09-24 10:23:33      阅读:109      评论:0      收藏:0      [点我收藏+]

通过拟合来求缺陷,对应halcon例程:方法—》轮廓线处理—》fit_rectangle2_contour_xld.hdev。

技术分享图片

 

 

 1 read_image (Image, C:/Users/zx80-165/Desktop/111.jpg)
 2 get_image_size (Image, Width, Height)
 3 dev_open_window (0, 0, Width, Height, black, WindowHandle)
 4 rgb1_to_gray (Image, GrayImage)
 5 dev_display (GrayImage)
 6 *快速二值化,与二值化是一致的,只不过多加了个参数,最后一个参数
 7 *是保留臭臭泥大于该值的二值化区域,否则还要调用一个select_shape
 8 fast_threshold (GrayImage, Region, 128, 255, 10)
 9 
10 *利用形态学提取边界
11 boundary (Region, RegionBorder, inner)
12 *膨胀,用矩形结构元素进行膨胀
13 dilation_rectangle1 (RegionBorder, RegionDilation, 7, 7)
14 *截取边缘图像
15 reduce_domain (GrayImage, RegionDilation, ImageReduced)
16 
17 *提取亚像素轮廓(canny边缘检测),1.7为平滑系数
18 edges_sub_pix (ImageReduced, Edges, canny, 1.7, 40, 120)
19 select_shape_xld (Edges, SelectedXLD, contlength, and, 199.45, 1000)
20 count_obj (SelectedXLD, Number)
21 
22 *用最小外接矩形你和该亚像素轮廓
23 fit_rectangle2_contour_xld (SelectedXLD, regression, -1, 0, 0, 3, 2, Row, Column, Phi, Length1, Length2, PointOrder)
24 dev_set_draw (margin)
25 *生成拟合的亚像素矩形轮廓
26 gen_rectangle2_contour_xld (Rectangle, Row, Column, Phi, Length1, Length2)
27 dev_display (Rectangle)
28 
29 set_display_font (WindowHandle, 16, mono, true, false)
30 dev_display (GrayImage)
31 for i := 0 to Number-1 by 1
32     *依次提取途中的亚像素轮廓
33     select_obj (SelectedXLD, ObjectSelected, i+1)
34     *获取亚像素轮廓每一个点的坐标
35     get_contour_xld (ObjectSelected, Rows, Cols)
36     gen_rectangle2_contour_xld (Rectangle2, Row[i], Column[i], Phi[i], Length1[i], Length2[i])  
37     get_contour_xld (Rectangle2, Row1, Col)
38     *计算轮廓上每一个点到拟合矩形四个角点的最小距离,对四周的点比较宽松,如果在拟合隽星以角点为圆心,
39     *半径为7的圆内,认为是正常的,对于边缘比较严格,如果某点离其拟合矩形对应点之间的距离大于1则认为有缺陷
40     D1:=sqrt((Rows-Row1[0])*(Rows-Row1[0])+(Cols-Col[0])*(Cols-Col[0]))
41     D2:=sqrt((Rows-Row1[1])*(Rows-Row1[1])+(Cols-Col[1])*(Cols-Col[1]))
42     D3:=sqrt((Rows-Row1[2])*(Rows-Row1[2])+(Cols-Col[2])*(Cols-Col[2]))
43     D4:=sqrt((Rows-Row1[3])*(Rows-Row1[3])+(Cols-Col[3])*(Cols-Col[3]))
44     DistConor:=min2(min2(D1,D2),min2(D3,D4))
45     *计算轮廓上每一点与其拟合矩形对应点之间的距离
46     dist_rectangle2_contour_points_xld (ObjectSelected, 0, Row[i], Column[i], Phi[i], Length1[i], Length2[i], Distances)
47     
48     flag :=true
49     for j := 0 to |Distances|-1 by 1
50         if(DistConor[j]>7 and Distances[j]>1)
51             flag:=false
52             break
53         endif
54     endfor
55     if(flag)
56         disp_message (WindowHandle, OK, image, Row[i], Column[i]- Length2[i]/2, green, true)
57     else
58         disp_message (WindowHandle, Not OK, image, Row[i], Column[i]- Length2[i]/2, red, true)
59     endif
60 endfor

效果图:

技术分享图片

 

Halcon学习:缺陷检测

原文:https://www.cnblogs.com/zxl971213/p/13722578.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!