首页 > 其他 > 详细

Restricted isometry property

时间:2020-09-28 22:03:50      阅读:71      评论:0      收藏:0      [点我收藏+]

 

算子范数(operate norm)是矩阵范数的一种。
 
 
算子范数是矩阵范数的一种,设向量x是一个n维向量,A是一个n*n的矩阵,则A的算子范数为Max(Ax/x).算子范数也称从属范数,其中x≠0。
技术分享图片
常见的算子范数有,列范数,行范数。
 

Restricted isometry property

From Wikipedia, the free encyclopedia
 
 
 
Jump to navigationJump to search

In linear algebra, the restricted isometry property (RIP) characterizes matrices which are nearly orthonormal, at least when operating on sparse vectors. The concept was introduced by Emmanuel Candès and Terence Tao[1] and is used to prove many theorems in the field of compressed sensing.[2] There are no known large matrices with bounded restricted isometry constants (computing these constants is strongly NP-hard,[3] and is hard to approximate as well[4]), but many random matrices have been shown to remain bounded. In particular, it has been shown that with exponentially high probability, random Gaussian, Bernoulli, and partial Fourier matrices satisfy the RIP with number of measurements nearly linear in the sparsity level.[5] The current smallest upper bounds for any large rectangular matrices are for those of Gaussian matrices.[6] Web forms to evaluate bounds for the Gaussian ensemble are available at the Edinburgh Compressed Sensing RIC page.[7]

Definition[edit]

Let A be an m × p matrix and let 1 ≤ s ≤ p be an integer. Suppose that there exists a constant {\displaystyle \delta _{s}\in (0,1)}技术分享图片 such that, for every m × s submatrix As of A and for every s-dimensional vector y,

{\displaystyle (1-\delta _{s})\|y\|_{2}^{2}\leq \|A_{s}y\|_{2}^{2}\leq (1+\delta _{s})\|y\|_{2}^{2}.\,}技术分享图片

Then, the matrix A is said to satisfy the s-restricted isometry property with restricted isometry constant {\displaystyle \delta _{s}}技术分享图片.

This is equivalent to

{\displaystyle \|A_{s}^{*}A_{s}-I\|_{2\to 2}\leq \delta _{s}}技术分享图片

where {\displaystyle I}技术分享图片 is the identity matrix and {\displaystyle \|X\|_{2\to 2}}技术分享图片 is the operator norm. See for example [8] for a proof.

Finally this is equivalent to stating that all eigenvalues of {\displaystyle A_{s}^{*}A_{s}}技术分享图片 are in the interval {\displaystyle [1-\delta _{s},1+\delta _{s}]}技术分享图片.

Restricted Isometric Constant (RIC)[edit]

The RIC Constant is defined as the infimum of all possible {\displaystyle \delta }技术分享图片 for a given {\displaystyle A\in \mathbb {R} ^{n\times m}}技术分享图片.

{\displaystyle \delta _{K}=\inf \left[\delta :(1-\delta )\|y\|_{2}^{2}\leq \|A_{s}y\|_{2}^{2}\leq (1+\delta )\|y\|_{2}^{2}\right],\ \forall |s|\leq K,\forall y\in R^{|s|}}技术分享图片

It is denoted as {\displaystyle \delta _{K}}技术分享图片.

Eigenvalues[edit]

For any matrix that satisfies the RIP property with a RIC of {\displaystyle \delta _{K}}技术分享图片, the following condition holds:[1]

{\displaystyle 1-\delta _{K}\leq \lambda _{min}(A_{\tau }^{*}A_{\tau })\leq \lambda _{max}(A_{\tau }^{*}A_{\tau })\leq 1+\delta _{K}}技术分享图片.

The tightest upper bound on the RIC can be computed for Gaussian matrices. This can be achieved by computing the exact probability that all the eigenvalues of Wishart matrices lie within an interval.

See also[edit]

  • Compressed sensing
  • Mutual coherence (linear algebra)
  • Terence Tao‘s website on compressed sensing lists several related conditions, such as the ‘Exact reconstruction principle‘ (ERP) and ‘Uniform uncertainty principle‘ (UUP)[9]
  • Nullspace property, another sufficient condition for sparse recovery
  • Generalized restricted isometry property,[10] a generalized sufficient condition for sparse recovery, where mutual coherence and restricted isometry property are both its special forms.

References[edit]

  1. Jump up to:a b E. J. Candes and T. Tao, "Decoding by Linear Programming," IEEE Trans. Inf. Th., 51(12): 4203–4215 (2005).
  2. ^ E. J. Candes, J. K. Romberg, and T. Tao, "Stable Signal Recovery from Incomplete and Inaccurate Measurements," Communications on Pure and Applied Mathematics, Vol. LIX, 1207–1223 (2006).
  3. ^ A. M. Tillmann and M. E. Pfetsch, "The Computational Complexity of the Restricted Isometry Property, the Nullspace Property, and Related Concepts in Compressed Sensing," IEEE Trans. Inf. Th., 60(2): 1248–1259 (2014)
  4. ^ Abhiram Natarajan and Yi Wu, "Computational Complexity of Certifying Restricted Isometry Property," Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014) (2014)
  5. ^ F. Yang, S. Wang, and C. Deng, "Compressive sensing of image reconstruction using multi-wavelet transform", IEEE 2010
  6. ^ B. Bah and J. Tanner "Improved Bounds on Restricted Isometry Constants for Gaussian Matrices"
  7. ^ "Archived copy". Archived from the original on 2010-04-27. Retrieved 2010-03-31.
  8. ^ "A Mathematical Introduction to Compressive Sensing" (PDF). Cis.pku.edu.cn. Retrieved 15 May 2018.
  9. ^ "Compressed sensing"Math.ucla.edu. Retrieved 15 May 2018.
  10. ^ Yu Wang, Jinshan Zeng, Zhimin Peng, Xiangyu Chang and Zongben Xu (2015). "On Linear Convergence of Adaptively Iterative Thresholding Algorithms for Compressed Sensing". IEEE Transactions on Signal Processing63 (11): 2957–2971. arXiv:1408.6890doi:10.1109/TSP.2015.2412915.

技术分享图片

 

 


 

 "A Mathematical Introduction to Compressive Sensing

 

https://www2.karlin.mff.cuni.cz/~vybiral/Sem-2017/Rauhut.pdf

 


 

 

 

 
 

Restricted isometry property

原文:https://www.cnblogs.com/cx2016/p/13746610.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!