首页 > 其他 > 详细

Pandas transform函数

时间:2020-10-04 20:22:32      阅读:71      评论:0      收藏:0      [点我收藏+]

作者|B. Chen
编译|VK
来源|Towards Datas Science

技术分享图片

Pandas是一个惊人的库,它包含了大量用于操作数据的内置函数。其中,transform()在处理行或列时非常有用。

在本文中,我们将介绍以下最常用的Pandas transform()用途:

  1. 转换值

  2. 组合groupby()

  3. 过滤数据

  4. 在组级别处理缺失值

请查看我的Github repo以获取源代码;https://github.com/BindiChen/machine-learning/blob/master/data-analysis/013-pandas-transform/pandas-transform.ipynb

1.转换值

我们来看看pd.transform(func, axis=0)

  • 第一个参数func指定用于操作数据的函数。它可以是函数、字符串函数名、函数列表或轴标签->函数的字典

  • 第二个参数轴指定函数应用于哪个轴。0表示对每列应用func,1表示对每行应用func。

让我们看看transform()是如何在一些示例的帮助下工作的。

函数

我们可以把函数传递给func。例如

df = pd.DataFrame({‘A‘: [1,2,3], ‘B‘: [10,20,30] })

def plus_10(x):
    return x+10

df.transform(plus_10)

技术分享图片

也可以使用lambda表达式。下面是plus_10()的lambda等价形式:

df.transform(lambda x: x+10)

字符串函数

我们可以将任何有效的Pandas字符串函数传递给func,例如‘sqrt‘:

df.transform(‘sqrt‘)

技术分享图片

函数列表

func可以是函数的列表。例如,来自NumPy的sqrt和exp:

df.transform([np.sqrt, np.exp])

技术分享图片

轴标签->函数的字典

func可以是轴标签->函数的字典。例如

df.transform({
    ‘A‘: np.sqrt,
    ‘B‘: np.exp,
})

技术分享图片

2.组合groupby()

Pandas transform()最引人注目的用法之一是组合groupy()结果。

让我们通过一个例子来看看这是如何工作的。假设我们有一个关于连锁餐厅的数据集

df = pd.DataFrame({
  ‘restaurant_id‘: [101,102,103,104,105,106,107],
  ‘address‘: [‘A‘,‘B‘,‘C‘,‘D‘, ‘E‘, ‘F‘, ‘G‘],
  ‘city‘: [‘London‘,‘London‘,‘London‘,‘Oxford‘,‘Oxford‘, ‘Durham‘, ‘Durham‘],
  ‘sales‘: [10,500,48,12,21,22,14]
})

技术分享图片

我们可以看到,每个城市都有多家餐厅在销售。我们想知道“每一家餐厅在本市的销售额占比是多少”。预期输出为:

技术分享图片

在这个计算中最棘手的部分是,我们需要得到一个城市的总销售额,并将其合并到数据中,以得到百分比。

有两种解决方案:

  1. groupby()、apply()和merge()

  2. groupby()和transform()

解决方案1:groupby()、apply()和merge()

第一种解决方案是使用groupby()分割数据,并使用apply()聚合每个组,然后使用merge()将结果合并回原始数据帧中

第1步:使用groupby()和apply()计算城市销售总额
city_sales = df.groupby(‘city‘)[‘sales‘]
             .apply(sum).rename(‘city_total_sales‘).reset_index()

技术分享图片

groupby(‘city‘)通过在city列上分组来拆分数据。对于每个组,函数sum应用于sales列,以计算每个组的总和。最后,将新列重命名为city_total_sales并重置索引(注意:需要reset_inde()来清除groupby(‘city‘)生成的索引。

此外,Pandas还有一个内置的sum()函数,下面是Pandas sum()的等效函数:

city_sales = df.groupby(‘city‘)[‘sales‘]
             .sum().rename(‘city_total_sales‘).reset_index()
第2步:使用merge()函数合并结果
df_new = pd.merge(df, city_sales, how=‘left‘)

技术分享图片

使用merge()和left outer join的how=‘left‘将组结果合并回到原始的DataFrame中

第3步:计算百分比

最后,可以计算并格式化百分比。

df_new[‘pct‘] = df_new[‘sales‘] / df_new[‘city_total_sales‘]
df_new[‘pct‘] = df_new[‘pct‘].apply(lambda x: format(x, ‘.2%‘))

技术分享图片

这当然是我们的工作。但这是一个多步骤的过程,需要额外的代码才能以我们需要的形式获取数据。

我们可以使用transform()函数有效地解决这个问题

解决方案2:groupby()和transform()

这个解决方案改变了游戏规则。一行代码就可以解决应用和合并问题。

步骤1:使用groupby()和transform()计算城市销售总额

转换函数在执行转换后保留与原始数据集相同数量的项。因此,使用groupby后跟transform(sum)的单行步骤返回相同的输出。

df[‘city_total_sales‘] = df.groupby(‘city‘)[‘sales‘]
                           .transform(‘sum‘)

技术分享图片

第2步:计算百分比

最后,这和求百分比是一样的。

df[‘pct‘] = df[‘sales‘] / df[‘city_total_sales‘]
df[‘pct‘] = df[‘pct‘].apply(lambda x: format(x, ‘.2%‘))

3.过滤数据

transform()也可用于过滤数据。在这里,我们试图获得该市总销售额超过40的记录

df[df.groupby(‘city‘)[‘sales‘].transform(‘sum‘) > 40]

技术分享图片

4.在组级别处理丢失的值

Pandas transform()的另一个用法是在组级别处理丢失的值。让我们用一个例子来看看这是如何工作的。

这里有一个数据帧供演示

df = pd.DataFrame({
    ‘name‘: [‘A‘, ‘A‘, ‘B‘, ‘B‘, ‘B‘, ‘C‘, ‘C‘, ‘C‘],
    ‘value‘: [1, np.nan, np.nan, 2, 8, 2, np.nan, 3]
})

技术分享图片

在上面的示例中,可以按名称将数据分成三组,每个组都缺少值。替换缺失值的常见解决方案是用平均值替换NaN。

让我们看看每组的平均值。

df.groupby(‘name‘)[‘value‘].mean()
name
A    1.0
B    5.0
C    2.5
Name: value, dtype: float64

在这里,我们可以使用transform()将缺少的值替换为组平均值。

df[‘value‘] = df.groupby(‘name‘)
                .transform(lambda x: x.fillna(x.mean()))

技术分享图片


你可以在我的Github上获取源代码:https://github.com/BindiChen/machine-learning/blob/master/data-analysis/013-pandas-transform/pandas-transform.ipynb

原文链接:https://towardsdatascience.com/when-to-use-pandas-transform-function-df8861aa0dcf

欢迎关注磐创AI博客站:
http://panchuang.net/

sklearn机器学习中文官方文档:
http://sklearn123.com/

欢迎关注磐创博客资源汇总站:
http://docs.panchuang.net/

Pandas transform函数

原文:https://www.cnblogs.com/panchuangai/p/13767660.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!