智能优化方法及其应用
|
授课老师:连宙辉 副教授 Institute of Computer Science & Technology Peking University Phone: 86-10-82529245 Email: lianzhouhui@pku.edu.cn |
通知:
课程编号:L1701682
课程名称:智能优化方法及其应用
英文名称:Intelligent Optimization Methods and Their Applications
授课对象: 信息学院硕博研究生
周学时/总学时:3/48
学分:3
开课目的:优化计算广泛应用于信息学科的各个研究领域,然而传统优化方法在实际应用中有很大的局限性。为了解决该问题,近年来,各种智能优化算法的研究得到了蓬勃发展,其中有广为人知的遗传算法、模拟退火算法、蚁群算法、神经网络算法等。迄今为止,智能优化算法在各个学科和各种实际应用场合中已经得到了广泛且有效的使用。本课程将紧密跟踪学术界最新发展动态,为信息学科的研究生掌握最新的智能优化技术抛砖引玉,为他们后续开展学术研究打下坚实基础。
教学要求:本课程将系统讲授智能优化方法的基础理论和应用技术,深入探讨学术界最新的研究成果,并结合应用实例进行讲解,使得听课的学生不仅能够全面掌握智能优化方法的核心理论,而且能将其应用到各自相关的研究工作中。成绩评定规则为:平时50%+期末50%
课程简介:
本课程将系统讲授智能优化方法的基础理论和应用技术,深入探讨学术界最新的研究成果,并结合应用实例进行讲解,使得听课的学生不仅能够全面掌握智能优化方法的核心理论,而且能将其应用到各自相关的研究工作中。成绩评定规则为:平时50%+期末50%
教学要求:
第零讲:课程介绍与内容概述
第1讲:经典优化算法1
第2讲:经典优化算法2
第3讲:伪随机数与蒙特卡洛方法
课件下载: Back to top
汪定伟等,智能优化方法,高等教育出版社,2007,ISBN 978-7-04-020886-3
段海斌等,仿生智能计算,科学出版社,2011
马昌凤等,最优化计算方法及其MATLAB程序实现,国防工业出版社,2015
Z. Lian*, J. Xiao. Automatic Shape Morphing for Chinese Characters, Siggraph Asia 2012, Article no. 2 (Technical briefs), 2012
Z. Lian*, A. Godil, J. Xiao. Feature-preserved 3D Canonical Form, International Journal of computer Vision (IJCV), vol. 102, no. 1-3, pp. 221-238, 2013
J. Liu, Z. Lian*, J. Xiao. 3D Mesh Unfolding via Semidefinite Programming. Eurographics 3DOR 2017
Z. Lian*, P.L. Rosin, X. Sun. Rectilinearity of 3D meshes, International Journal of Computer Vision (IJCV), vol. 89, no. 2-3, pp. 130-151, 2010
Z. Lian*, A. Godil, P.L. Rosin, X. Sun. A New Convexity Measurement for 3D Meshes, CVPR 2012, pp. 119-126, 2012
E. Sizikova, T. Funkhouser. Wall Painting Reconstruction Using a Genetic Algorithm, EG Workshop, 2016
D. Silver, A. Huang, et al. Mastering the game of Go with deep neural networks and tree search, Nature 529, pp. 484-489, 2016
M. Qiu, Z. Ming, et al. Phase-Change Memory Optimization for Green Cloud with Genetic Algorithm, IEEE Transactions on Computers, vol. 64, no. 12, pp. 3528-3540, 2015
D. Sholomon, O. David et al. A Genetic Algorithm-Based Solver for Very Large Jigsaw Puzzles, CVPR 2013
C. Ansotegui, Y. Malitsky, et al. Model-Based Genetic Algorithms for Algorithm Configuration, IJCAI 2015
E. Ijjina, K. MohanChalavadi. Human action recognition using genetic algorithms and convolutional neural networks, Pattern Recognition,vol. 59, pp. 199-212, 2016
Z Lun, E Kalogerakis, R Wang, A Sheffer. Functionality preserving shape style transfer, Siggraph Asia 2016
X Fan, et al. Automated view and path planning for scalable multi-object 3D scanning, Siggraph Asia 2016
K Chen, et al. Magic decorator: automatic material suggestion for indoor digital scenes, Siggraph 2015
A. Barman, S. Shah. SHaPE: A Novel Graph Theoretic Algorithm for Making Consensus-based Decisions in Person Re-identification Systems, ICCV 2017
Z. Yu, et al. An adaptive unsupervised approach toward pixel clustering and color image segmentation, Pattern Recognition 2010
C. Sui, et al. Deep feature learning for dummies: A simple auto-encoder training method using Particle Swarm Optimisation, Pattern Recognition Letter 2017
G. Huang, et al. Densely Connected Convolutional Networks, CVPR 2017 (cvpr 2017 best paper)
A. Myronenko, et al. Non-rigid point set registration Coherent Point Drift, NIPS 2006 (陈杰)
L. Xie and A. Yuille Genetic CNN, ICCV 2017 (潘丽晨)
C. Tutum, et al. Functional Generative Design: An Evolutionary Approach to 3D-Printing, GECCO ‘18 (吴俊霖)
B. Taborda, et al. Shaper-GA: automatic shape generation for modular house design, GECCO ‘18 (吕管楠)
Y. Lin and T. Yu Investigation of the exponential population scheme for genetic algorithms, GECCO ‘18 (郭一江)
重要会议 GECCO
参考资料: Back to top
Last update on Sep. 06, 2017
visits since May. 2015
原文:https://www.cnblogs.com/cx2016/p/13778339.html