首页 > 编程语言 > 详细

Python分类模型构建

时间:2020-10-13 21:16:22      阅读:42      评论:0      收藏:0      [点我收藏+]

(模型参数待补充)

1.逻辑回归模型

Logistic函数图像很像一个“S”型,所以该函数又叫 sigmoid 函数。

 

from sklearn.liner_model import LogisticRegression

LR = LogisticRegression()

clf = LR.fit(X, y)

prediction = clf.predict(X)

sklearn.linear_model.LogisticRegression

 

2.线性判别(LDA)——费希尔判别

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

LDA = LinearDiscriminantAnalysis()

clf = LDA.fit(X, y)

prediction = clf.predict(X)

sklearn.discriminant_analysis.LinearDiscriminantAnalysis

 

3.KNN

from sklearn.neighbors import KNeighborsClassifier

clf = KNeighborsClassifier().fit(X, y) _可以一步到位

prediction = clf.predict(X)

sklearn.neighbors.KNeighborsClassifier

 

4.贝叶斯

from sklearn.naive_bayes import GaussianNB

sklearn.naive_bayes.GaussianNB

 

5.决策树

from sklearn.tree import DecisionTreeClassifier

sklearn.tree.DecisionTreeClassifier

 

6.支持向量机

from sklearn.svm import SVC

sklearn.svm.SVC

 

7.神经网络

from sklearn.neural_network import MLPClassifier

sklearn.neural_network.MLPClassifier

Python分类模型构建

原文:https://www.cnblogs.com/myra-dream/p/13797410.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!