题目大意:给一个树,每次询问距离点\(x\)不超过\(y\)的所有点的点权和,\(n \le 10^5\).
考虑树上\(\texttt{dp}\),设\(dp1_{i,j}\)为\(i\)子树下距离不超过\(j\)的所有点的点权和,易得:
考虑转换答案,设\(dp2_{i,j}\)为\(距离\)i\(不超过\)j$的所有点的点权和,通过容斥得:
其中\(fa\)为\(i\)的父亲节点。
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5;
int n, val[N], k;
vector<int> g[N];
int dp1[N][22], dp2[N][22];
void dfs1(int x, int fa)
{
for (int i = 0; i <= k; i++)
dp1[x][i] = val[x];
for (int i = 0; i < g[x].size(); i++)
{
int v = g[x][i];
if (v != fa)
{
dfs1(v, x);
for (int j = 1; j <= k; j++)
{
dp1[x][j] += dp1[v][j - 1];
}
}
}
return;
}
void dfs2(int x, int fa)
{
for (int i = 0; i < g[x].size(); i++)
{
int v = g[x][i];
if (v != fa)
{
dp2[v][1] += dp1[x][0];
for (int j = 2; j <= k; j++)
{
dp2[v][j] += dp2[x][j - 1] - dp1[v][j - 2];
}
dfs2(v, x);
}
}
return;
}
int main(void)
{
scanf("%d%d", &n, &k);
for (int i = 1; i < n; i++)
{
int u, v;
scanf("%d%d", &u, &v);
g[u].push_back(v);
g[v].push_back(u);
}
for (int i = 1; i <= n; i++)
scanf("%d", &val[i]);
dfs1(1, 0);
for (int i = 1; i <= n; i++)
{
for (int j = 0; j <= k; j++)
dp2[i][j] = dp1[i][j];
}
dfs2(1, 0);
for (int i = 1; i <= n; i++)
{
printf("%d\n", dp2[i][k]);
}
return 0;
}
P3047 [USACO12FEB]Nearby Cows G
原文:https://www.cnblogs.com/luyiming123blog/p/P3047.html