首页 > 其他 > 详细

golearn

时间:2020-10-20 09:33:17      阅读:26      评论:0      收藏:0      [点我收藏+]

 

与gorgonia 相比,

更像是(非深度学习的)普通机器学习库

 

 
 
 
 master 
 
Go to fileAdd file Code 

Files

Type
Name
Latest commit message
Commit time
 
2 years ago
 
last month
 
2 years ago
 
2 years ago
 
3 months ago
 
5 years ago
 
7 years ago
 
2 years ago
 
7 years ago

README.md

GoLearn

技术分享图片
技术分享图片 技术分享图片
技术分享图片

技术分享图片

GoLearn is a ‘batteries included‘ machine learning library for Go. Simplicity, paired with customisability, is the goal. We are in active development, and would love comments from users out in the wild. Drop us a line on Twitter.

twitter: @golearn_ml

Install

See here for installation instructions.

Getting Started

Data are loaded in as Instances. You can then perform matrix like operations on them, and pass them to estimators. GoLearn implements the scikit-learn interface of Fit/Predict, so you can easily swap out estimators for trial and error. GoLearn also includes helper functions for data, like cross validation, and train and test splitting.

package main

import (
	"fmt"

	"github.com/sjwhitworth/golearn/base"
	"github.com/sjwhitworth/golearn/evaluation"
	"github.com/sjwhitworth/golearn/knn"
)

func main() {
	// Load in a dataset, with headers. Header attributes will be stored.
	// Think of instances as a Data Frame structure in R or Pandas.
	// You can also create instances from scratch.
	rawData, err := base.ParseCSVToInstances("datasets/iris.csv", false)
	if err != nil {
		panic(err)
	}

	// Print a pleasant summary of your data.
	fmt.Println(rawData)

	//Initialises a new KNN classifier
	cls := knn.NewKnnClassifier("euclidean", "linear", 2)

	//Do a training-test split
	trainData, testData := base.InstancesTrainTestSplit(rawData, 0.50)
	cls.Fit(trainData)

	//Calculates the Euclidean distance and returns the most popular label
	predictions, err := cls.Predict(testData)
	if err != nil {
		panic(err)
	}

	// Prints precision/recall metrics
	confusionMat, err := evaluation.GetConfusionMatrix(testData, predictions)
	if err != nil {
		panic(fmt.Sprintf("Unable to get confusion matrix: %s", err.Error()))
	}
	fmt.Println(evaluation.GetSummary(confusionMat))
}
Iris-virginica	28	2	  56	0.9333	0.9333  0.9333
Iris-setosa	    29	0	  59	1.0000  1.0000	1.0000
Iris-versicolor	27	2	  57	0.9310	0.9310  0.9310
Overall accuracy: 0.9545

Examples

GoLearn comes with practical examples. Dive in and see what is going on.

cd $GOPATH/src/github.com/sjwhitworth/golearn/examples/knnclassifier
go run knnclassifier_iris.go
cd $GOPATH/src/github.com/sjwhitworth/golearn/examples/instances
go run instances.go
cd $GOPATH/src/github.com/sjwhitworth/golearn/examples/trees
go run trees.go

Docs

Join the team

Please send me a mail at stephenjameswhitworth@gmail.com

About

Machine Learning for Go

Resources

License

Releases

No releases published

Packages

No packages published

Languages

 

golearn

原文:https://www.cnblogs.com/cx2016/p/13844120.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!