交并比(Intersection-over-Union,IoU),目标检测中使用的一个概念,是产生的候选框(candidate bound)与原标记框(ground truth bound)的交叠率,即它们的交集与并集的比值。最理想情况是完全重叠,即比值为1。
计算公式:
C++代码:
struct bbox
{
int m_left;
int m_top;
int m_width;
int m_height;
bbox() {}
bbox(int left, int top, int width, int height)
{
m_left = left;
m_top = top;
m_width = width;
m_height = height;
}
};
float IOU_compute(const bbox b1, const bbox b2)
{
w = max(min((b1.m_left + b1.m_width), (b2.m_left + b2.m_width)) - max(b1.m_left, b2.m_left), 0);
h = max(min((b1.m_top + b1.m_height), (b2.m_top + b2.m_height)) - max(b1.m_top, b2.m_top), 0);
return w*h / (b1.m_width*b1.m_height + b2.m_width*b2.m_height - w*h);
}
NMS(non maximum suppression),中文名非极大值抑制,在很多计算机视觉任务中都有广泛应用,如:边缘检测、目标检测等。
在物体检测中NMS(Non-maximum suppression)非极大抑制应用十分广泛,其目的是为了消除多余的框,找到最佳的物体检测的位置。
在RCNN系列算法中,会从一张图片中找出很多个候选框(可能包含物体的矩形边框),然后为每个矩形框为做类别分类概率。
就像上面的图片一样,定位一个车辆,最后算法就找出了一堆的方框,我们需要判别哪些矩形框是没用的。
非极大值抑制:先假设有6个候选框,根据分类器类别分类概率做排序,从小到大分别属于车辆的概率分别为A、B、C、D、E、F。
C++代码:
//升序排列
bool cmpScore(Bbox lsh, Bbox rsh) {
if (lsh.score < rsh.score)
return true;
else
return false;
}
void nms(vector<Bbox> &boundingBox_, const float overlap_threshold, string modelname = "Union"){
if(boundingBox_.empty()){
return;
}
//对各个候选框根据score的大小进行升序排列
sort(boundingBox_.begin(), boundingBox_.end(), cmpScore);
float IOU = 0;
float maxX = 0;
float maxY = 0;
float minX = 0;
float minY = 0;
vector<int> vPick;
int nPick = 0;
multimap<float, int> vScores; //存放升序排列后的score和对应的序号
const int num_boxes = boundingBox_.size();
vPick.resize(num_boxes);
for (int i = 0; i < num_boxes; ++i){
vScores.insert(pair<float, int>(boundingBox_[i].score, i));
}
while(vScores.size() > 0){
int last = vScores.rbegin()->second; //反向迭代器,获得vScores序列的最后那个序列号
vPick[nPick] = last;
nPick += 1;
for (multimap<float, int>::iterator it = vScores.begin(); it != vScores.end();){
int it_idx = it->second;
maxX = max(boundingBox_.at(it_idx).x1, boundingBox_.at(last).x1);
maxY = max(boundingBox_.at(it_idx).y1, boundingBox_.at(last).y1);
minX = min(boundingBox_.at(it_idx).x2, boundingBox_.at(last).x2);
minY = min(boundingBox_.at(it_idx).y2, boundingBox_.at(last).y2);
//转换成了两个边界框相交区域的边长
maxX = ((minX-maxX+1)>0)? (minX-maxX+1) : 0;
maxY = ((minY-maxY+1)>0)? (minY-maxY+1) : 0;
//求交并比IOU
IOU = (maxX * maxY)/(boundingBox_.at(it_idx).area + boundingBox_.at(last).area - IOU);
if(IOU > overlap_threshold){
it = vScores.erase(it); //删除交并比大于阈值的候选框,erase返回删除元素的下一个元素
}else{
it++;
}
}
}
vPick.resize(nPick);
vector<Bbox> tmp_;
tmp_.resize(nPick);
for(int i = 0; i < nPick; i++){
tmp_[i] = boundingBox_[vPick[i]];
}
boundingBox_ = tmp_;
}
原文:https://www.cnblogs.com/ai-tuge/p/13899285.html